scholarly journals Biological control of Pectobacterium carotovorum subsp. carotovorum, the causal agent of bacterial soft rot in vegetables, in vitro and in vivo tests

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Hassan Abd-El-Khair ◽  
Tarek G. Abdel-Gaied ◽  
Maurice S. Mikhail ◽  
Ahmed I. Abdel-Alim ◽  
Hamdy I. Seif El-Nasr

Abstract Background Several chemical bactericides were applied for controlling soft rot bacteria, Pectobacterium carotovorum subsp. carotovorum, which causes the destructive soft rot disease to many economically important vegetables, but because of their toxic hazards on human and environment became limit. The biocontrol was applied to control many plant pathogens. Therefore, this work is aimed to study the antagonistic activity of bacterial agents, i.e. Bacillus subtilis, Bacillus pumilus, Bacillus megaterium and Pseudomonas fluorescens, and fugal agents, i.e. Trichoderma harzianum, Trichoderma viride and Trichoderma virens, to control bacterial soft rot disease under in vitro and in vivo tests. Results The tested treatments could protect the potato tubers against the development of soft rot. T. viride and T. virens were highly effective in reducing soft rot symptoms on inoculated potato tuber slices, when applied at the same time or 2 h before pathogen inoculation, while B. megaterium and T. harzianum were highly effective when applied at the same time or 2 h after pathogen inoculation. In whole potato tubers technique, B.pumilus highly protected the stored potato tuber under artificially infection conditions, than P. fluorescens, T. harzianum, B. subtilis, T. viride, T. virens and B. megaterium, respectively. Conclusion Application of fungal agents or specify the bacterial species can play an important role in controlling bacterial soft rot disease in vegetables and increase the stored periods of potato tubers under storage conditions without any toxic effects.

Agrikultura ◽  
2016 ◽  
Vol 27 (3) ◽  
Author(s):  
Noor Istifadah ◽  
Muhamad Salman Umar ◽  
Sudarjat Sudarjat ◽  
Luciana Djaya

ABSTRACTThe abilities of endophytic bacteria from potato roots and tubers to suppress soft rot disease (Erwinia carotovora pv. carotovora) in potato tuberSoft rot disease caused by Erwinia carotovora pv. carotovora is one of limiting factors in cultivation and post harvest of potato. The eco-friendly control measure that can be developed for controlling the diseases is biological control. Microbes that are potential as biological control agents include endophytic bacteria. This paper discussed the results of study examining the potential of endophytic bacteria isolated from roots and tubers of potato to inhibit the growth of E. carotovora pv. carotovora in vitro and suppress soft rot disease in potato tuber. The results showed that among 24 isolates examined, four isolates of endophytic bacteria (one isolate from potato tuber and three isolates from potato roots) inhibited the growth of E. carotovora pv. carotovora in vitro with inhibition zone 3.5-6.8 mm. In the in vivo test, the isolates inhibited the soft rot disease in potato tuber by 71.5-86.4%. The isolate that tended to show relatively better inhibition in vitro and in vivo was isolate from potato tuber which is CK U3 (Lysinibacillus sp.)Keywords: Biological control, Endophytic bacteria, Post-harvest, Potato, Soft rot diseaseABSTRAKPenyakit busuk lunak yang disebabkan bakteri Erwinia carotovora pv. carotovora, merupakan salah satu kendala dalam budidaya dan pascapanen kentang. Cara pengendalian ramah lingkungan yang dapat dikembangkan untuk menekan penyakit tersebut adalah pengendalian biologi. Kelompok mikroba yang berpotensi sebagi agens pengendali biologi adalah bakteri endofit. Artikel ini mendiskusikan potensi isolat bakteri endofit yang berasal dari ubi dan akar kentang untuk menghambat pertumbuhan bakteri E. carotovora pv. carotovora secara in vitro dan menekan perkembangan penyakit busuk lunak pada ubi kentang. Hasil percobaan menunjukkan bahwa diantara 24 isolat bakteri yang diuji, terdapat empat isolat bakteri endofit (satu isolat dari ubi kentang dan tiga isolat dari akar kentang) yang dapat menghambat pertumbuhan bakteri E. carotovora pv. carotovora secara in vitro dengan zona penghambatan sebesar 3,5-6,8 mm. Pada pengujian secara in vivo, isolat-isolat tersebut dapat menekan perkembangan penyakit busuk lunak pada ubi kentang sebesar 71,5-86,4%. Isolat yang cenderung menunjukkan penghambatan relatif lebih baik secara in vitro dan in vivo adalah isolat bakteri endofit asal ubi kentang yaitu isolat CK U3 (Lysinibacillus sp.).Kata Kunci: Pengendalian biologi, Bakteri endofit, Pascapanen, Kentang, Penyakit busuk basah


2017 ◽  
Vol 52 (2) ◽  
pp. 135-140 ◽  
Author(s):  
MM Rahman ◽  
AA Khan ◽  
IH Mian ◽  
AM Akanda ◽  
MZ Alam

Bactericidal effect was investigated by chemicals against potato soft rot bacteria in vitro and in storage. The chemicals were acetic acid, boric acid, bleaching powder, lactic acid, calcium hydroxide, calcium chloride, potassium chloride and sodium hypo-chloride. Among eight  chemicals only three chemicals viz. acetic acid, boric acid and bleaching powder showed bactericidal activity against potato soft rot bacteria  Pectobacterium carotovorum subsp. carotovorum (E. carotovora subsp. carotovora) P-138 in vitro. Based on the results of in vitro experiment three chemicals, acetic acid, boric acid and bleaching powder were used to control soft rot disease of potato in storage. Fresh potato tubers were dipped in 0.2% solution/suspensions of acetic acid, boric acid and bleaching powder for 30 min. Then soft rot bacteria Pectobacterium carotovorum subsp. carotovorum P-138 was inoculated on potato. Finally potatoes were stored for 22 weeks in net bags in sterilized condition. All the three chemicals significantly decreased the infection rate, loss in weight and increased percentage of disease reduction (PDR) of potato. Boric acid was the most effective in controlling the soft rot disease of potato in storage followed by acetic acid and bleaching powder. So these chemicals may be used for seed purpose storage of potato tubers for year round storage at farmer’s level.Bangladesh J. Sci. Ind. Res. 52(2), 135-140, 2017


2016 ◽  
Vol 57 (1) ◽  
pp. 1-8
Author(s):  
Sima Azadmanesh ◽  
Javad Mozafari ◽  
Nader Hasanzadeh ◽  
Cobra Moslemkhani

Abstract In vitro screening techniques were used to evaluate 46 genotypes of Iranian potato collection for resistance to bacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc). One month old in vitro rooted potato plantlets were inoculated by two inoculation techniques under in vitro conditions: 1) sterile toothpicks dipped into bacterial suspension and pressed into the crown of plantlets and 2) the freshly cut crown of plantlets were dipped into bacterial suspension of 108 cfu ∙ ml-1 for 10 min. Typical soft rot disease symptoms, including the percentage of wilted leaves were recorded on inoculated plantlets 3, 6, 9, 12 and 15 days post-inoculation. The potato genotypes which were examined responded differently to Pcc and varying levels of resistance were observed. Potato genotype AG showed the highest level of resistance. Results obtained from in vitro screening were then verified by classical tuber slice assay. The verifications were conducted using five representative cultivars: Milva, Ramus, Picaso, Marfona and Agria which responded similarly to both in vitro and classical evaluation systems. Similar results obtained from these tests indicated that the in vitro screening technique developed in this study could provide a simple and rapid whole plant assay in selecting resistant potato genotypes against bacterial soft rot.


2021 ◽  
Vol 9 (1) ◽  
pp. 2087-2092
Author(s):  
R Kalaivanan ◽  
K Eraivan Arutkani Aiyanathan ◽  
S Thiruvudainambi ◽  
N Senthil ◽  
A Beaulah ◽  
...  

2020 ◽  
Vol 8 (5) ◽  
pp. 697 ◽  
Author(s):  
Jieling Li ◽  
Ming Hu ◽  
Yang Xue ◽  
Xia Chen ◽  
Guangtao Lu ◽  
...  

Dickeya zeae is the causal agent of bacterial soft rot disease, with a wide range of hosts all over the world. At present, chemical agents, especially agricultural antibiotics, are commonly used in the prevention and control of bacterial soft rot, causing the emergence of resistant pathogens and therefore increasing the difficulty of disease prevention and control. This study aims to provide a safer and more effective biocontrol method for soft rot disease caused by D. zeae. The spot-on-lawn assay was used to screen antagonistic bacteria, and three strains including SC3, SC11 and 3-10 revealed strong antagonistic effects and were identified as Pseudomonas fluorescens, P. parafulva and Bacillus velezensis, respectively, using multi-locus sequence analysis (MLSA) based on the sequences of 16S rRNA and other housekeeping genes. In vitro antimicrobial activity showed that two Pseudomonas strains SC3 and SC11 were only antagonistic to some pathogenic bacteria, while strain 3-10 had broad-spectrum antimicrobial activity on both pathogenic bacteria and fungi. Evaluation of control efficacy in greenhouse trials showed that they all restrained the occurrence and development of soft rot disease caused by D. zeae MS2 or EC1. Among them, strain SC3 had the most impressive biocontrol efficacy on alleviating the soft rot symptoms on both monocotyledonous and dicotyledonous hosts, and strain 3-10 additionally reduced the occurrence of banana wilt disease caused by Fusarium oxysporum f. sp. cubensis. This is the first report of P. fluorescens, P. parafulva and B. velezensis as potential bio-reagents on controlling soft rot disease caused by D. zeae.


2016 ◽  
Vol 4 (3) ◽  
pp. 105-119
Author(s):  
Abdelradi T. Bakeer ◽  
Khaled Elbanna ◽  
Sameh A. Elnaggar

Three natural antibacterial compounds including bacteriocin like substance (BLS) produced from lactic acid bacteria (LAB), ethanolic extract of propolis (EEP), and nine plant extracts were evaluated against soft rot Bacillus strains. Testing in vivo these compounds were evaluated to control pear and apple soft rot disease. Among eight BLS tested, BLS of LAB2, LAB105 and LAB 107 exhibited the highest antibacterial activity as indicated by the formation of clear inhibition zone. Propolis extracts exhibited significant antibacterial activity against all tested soft rot Bacillus strains and it was noticed that the antibacterial activity was concentration dependent. Among nine plant extracts tested, extracts of Eucalyptus globulus and Psidium guajava exhibited the highest antibacterial activity. All tested antibacterial products significantly decreased apple and pear soft rot severity caused by Bacillus altitudinis compared to untreated control. The highest reduction percentage of soft rot severity was recorded for EEP followed by BLS from LAB and plant extracts tested, respectively. Combined pre-and post-harvest treatments of apple and pear with antimicrobial compounds proved to be more effective in reducing the soft rot severity and improved the physical and chemical properties of fruits during storage in both years of the study. The natural antimicrobial agents used in this study were promising compounds, since it seems to be more safe, economical and great potential for extending the shelf life and improve the quality of fruits. Therefore, the application of these compounds in the control of apple and pear soft rot could be advantageous for consumers, producers, and the environment.


2007 ◽  
Vol 120 (3) ◽  
pp. 305-310 ◽  
Author(s):  
Xiu-Fang Hu ◽  
Fei-Xiang Ying ◽  
Yu-Bo He ◽  
Yuan-Yuan Gao ◽  
Hai-Min Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document