In vitro assessment of Fusarium head blight spp. on wheat cultivars

2017 ◽  
Vol 50 (5-6) ◽  
pp. 254-261 ◽  
Author(s):  
Nachaat Sakr
1997 ◽  
Vol 25 (3) ◽  
pp. 673-675 ◽  
Author(s):  
Piotr Goliński ◽  
Marian Kostecki ◽  
Przemysław Kaptur ◽  
Slawomir Wojciechowski ◽  
Zygmunt Kaczmarek ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 235-246
Author(s):  
W.Q. Shi ◽  
L.B. Xiang ◽  
D.Z. Yu ◽  
S.J. Gong ◽  
L.J. Yang

Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss in wheat and barley production. Integrated pest management (IPM) is required to control this disease and biofungicides, such as tetramycin, could be a novel addition to IPM strategies. The current study investigated in vitro tetramycin toxicity in Fusarium graminearum and evaluated its effectiveness for the control of Fusarium head blight FHB. Tetramycin was shown to affect three key aspects of Fusarium pathogenicity: spore germination, mycelium growth and deoxynivalenol (DON) production. The in vitro results indicated that tetramycin had strong inhibitory activity on the mycelial growth and spore germination. Field trials indicated that tetramycin treatment resulted in a significant reduction in both the FHB disease index and the level of DON accumulation. The reduced DON content in harvested grain was correlated with the amount of Tri5 mRNA determined by qRT-PCR. Synergistic effects between tetramycin and metconazole, in both the in vitro and field experiments were found. Tetramycin could provide an alternative option to control FHB.


Author(s):  
Sardar AMIN ◽  
Marin ARDELEAN ◽  
Vasile MOLDOVAN ◽  
Rodica CADAR

Fusarium head blight (FHB), caused by Fusarium spp., has become one of the most destructive diseases in the world’s wheat growing areas , especially in the humid and semihumid regions (Paillard et al. 2004, Mesterhazy 1978, Stack & Mullen 1985; Kiecana 1987; Kiecana et al. 1988). Six winter wheat cultivars, recently released and widely grown in Trasylvania, have been evaluated for FHB resistance during 2006. The evaluation was made by means of artificial inoculations with Fusarium graminearum and assesment of symptom intensity by computing AUDPC index (Area Under Developmental Progress Curve). Based on these data, two cultivars (Dumbrava and Turda 195) were considered as resistant, two cultivars (Ardeal and Arieşan) as medium resistant and other two cultivars (Fundulea 4 and GK Öthalom) as susceptible to FHB. The reaction to FHB of the six tested cultivars, based on the postharvest indices, showed significant differences among these cultivars as far as the yield elements and the total grain yield were considered. Actually, in the resistant cultivars, both the total grain yield and some of the yield elements (spike wight, grain weght/spike and 1000 kernel weigt) were significantly less affected by FHB than in medium resistant and susceptible cultivars.


Author(s):  
Tony Twamley ◽  
Mark Gaffney ◽  
Angela Feechan

AbstractFusarium graminearum and Zymoseptoria tritici cause economically important diseases of wheat. F. graminearum is one of the primary causal agents of Fusarium head blight (FHB) and Z. tritici is the causal agent of Septoria tritici blotch (STB). Alternative control methods are required in the face of fungicide resistance and EU legislation which seek to cut pesticide use by 2030. Both fungal pathogens have been described as either hemibiotrophs or necrotrophs. A microbial fermentation-based product (MFP) was previously demonstrated to control the biotrophic pathogen powdery mildew, on wheat. Here we investigated if MFP would be effective against the non-biotrophic fungal pathogens of wheat, F. graminearum and Z. tritici. We assessed the impact of MFP on fungal growth, disease control and also evaluated the individual constituent parts of MFP. Antifungal activity towards both pathogens was found in vitro but MFP only significantly decreased disease symptoms of FHB in planta. In addition, MFP was found to improve the grain number and weight, of uninfected and F. graminearum infected wheat heads.


2021 ◽  
Author(s):  
Maira R. Duffeck ◽  
Ananda Y. Bandara ◽  
Dilooshi K. Weerasooriya ◽  
Alyssa Collins ◽  
Philip J. Jensen ◽  
...  

Fusarium graminearum is the main causal species of Fusarium head blight (FHB) globally. Recent changes in the trichothecene (toxin) types in the North American FHB pathogens support the need for continued surveillance. In this study, 461 isolates were obtained from symptomatic spikes of wheat, spelt, barley, and rye crops during 2018 and 2019. These were all identified to species and toxin types using molecular-based approaches. An additional set of 77 F. graminearum isolates obtained from overwintering crop residues during Winter 2012 were molecularly identified to toxin types. A subset of 31 F. graminearum isolates (15 15ADON and 16 3ADON) were assessed for mycelial growth, macroconidia, perithecia, and ascospore production, and sensitivity to two triazole fungicides. Ninety percent of isolates obtained from symptomatic spikes (n = 418) belonged to F. graminearum, with another four species found at a lower frequency (n = 39). F. graminearum isolates from symptomatic spikes were mainly of the 15ADON (95%), followed by 3ADON (4%), NIV (0.7%), and NX-2 (0.3%) toxin types. All F. graminearum isolates obtained from overwintering residue were of the 15ADON type. Toxin types could not be differentiated based on multivariate analysis of growth and reproduction traits. All isolates were sensitive to tebuconazole and metconazole fungicides in vitro. This study confirms the dominance of F. graminearum and suggests ecological and environmental factors that lead to similar composition of toxin types in Northern U.S. Our results are useful to assess the sustainability of FHB management practices and provide a baseline for future FHB surveys.


Sign in / Sign up

Export Citation Format

Share Document