scholarly journals Aggressiveness of fusarium head blight species towards two modern Syrian wheat cultivars in an in vitro Petri-dish

2018 ◽  
Vol 46 (3) ◽  
pp. 480-489 ◽  
Author(s):  
N. Sakr
Toxins ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 399
Author(s):  
Hiroyuki Morimura ◽  
Michihiro Ito ◽  
Shigenobu Yoshida ◽  
Motoo Koitabashi ◽  
Seiya Tsushima ◽  
...  

Fusarium head blight (FHB) of cereals is a severe disease caused by the Fusarium graminearum species complex. It leads to the accumulation of the mycotoxin deoxynivalenol (DON) in grains and other plant tissues and causes substantial economic losses throughout the world. DON is one of the most troublesome mycotoxins because it is a virulence factor to host plants, including wheat, and exhibits toxicity to plants and animals. To control both FHB and DON accumulation, a biological control approach using DON-degrading bacteria (DDBs) is promising. Here, we performed a disease control assay using an in vitro petri dish test composed of germinated wheat seeds inoculated with F. graminearum (Fg) and DDBs. Determination of both grown leaf lengths and hyphal lesion lengths as a measure of disease severity showed that the inoculation of seeds with the DDBs Devosia sp. strain NKJ1 and Nocardioides spp. strains SS3 or SS4 were protective against the leaf growth inhibition caused by Fg. Furthermore, it was as effective against DON accumulation. The inoculation with strains SS3 or SS4 also reduced the inhibitory effect on leaves treated with 10 µg mL−1 DON solution (without Fg). These results indicate that the DDBs partially suppress the disease by degrading DON.


2019 ◽  
Vol 13 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Nachaat Sakr

Background: In vitro tools have proved to be very useful in identifying quantitative resistance in wheat to Fusarium Head Blight (FHB) infection. However, there is a need to understand how the different in vitro and in planta tests correlate to describe the level of wheat resistance to FHB infection. Objective and Methods: We evaluated the correlation between in vitro symptom assessment using nine quantitative resistance criteria and in planta disease severity for Type II resistance assessment using a set of 16 FHB isolates across two widely grown Syrian wheat cultivars: Cham1 (durum) and Cham6 (bread). Results: Cultivar differences after inoculation with fungal isolates in seedlings and adult plants relative to the controls were detected. There were significant differences in the resistance of two wheat cultivars as measured by adult FHB resistance, Latent Period (LP) of detached leaf inoculation and standardized Area Under Disease Progress Curve (AUDPCstandard) of modified Petri-dish inoculation. Correlation coefficients between FHB severity and the two in vitro components LP and AUDPCstandard were significant (r=0.545 with p<0.05, and r=0.659 with p<0.01, respectively). No significant differences in the resistance of Cham6 and Cham1 were indicated for the other seven in vitro components: incubation period and lesion length of detached leaf inoculation, germination rate reduction and coleoptile length reduction of modified Petri-dish inoculation and lesion length of clip-dipping inoculation and percentage of infected seedlings of foliar-spraying and pin-point inoculations. Results from these seven components were not correlated with adult FHB resistance. Longer latent period and less AUDPCstandard were related to greater FHB disease-type II resistance. Conclusion: LP and AUDPCstandard are indicators of mechanisms of resistance occurring in the whole plant during FHB infection. Therefore, the idea of using in vitro components is based on their predictive ability of in planta adult FHB resistance.


1997 ◽  
Vol 25 (3) ◽  
pp. 673-675 ◽  
Author(s):  
Piotr Goliński ◽  
Marian Kostecki ◽  
Przemysław Kaptur ◽  
Slawomir Wojciechowski ◽  
Zygmunt Kaczmarek ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 235-246
Author(s):  
W.Q. Shi ◽  
L.B. Xiang ◽  
D.Z. Yu ◽  
S.J. Gong ◽  
L.J. Yang

Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss in wheat and barley production. Integrated pest management (IPM) is required to control this disease and biofungicides, such as tetramycin, could be a novel addition to IPM strategies. The current study investigated in vitro tetramycin toxicity in Fusarium graminearum and evaluated its effectiveness for the control of Fusarium head blight FHB. Tetramycin was shown to affect three key aspects of Fusarium pathogenicity: spore germination, mycelium growth and deoxynivalenol (DON) production. The in vitro results indicated that tetramycin had strong inhibitory activity on the mycelial growth and spore germination. Field trials indicated that tetramycin treatment resulted in a significant reduction in both the FHB disease index and the level of DON accumulation. The reduced DON content in harvested grain was correlated with the amount of Tri5 mRNA determined by qRT-PCR. Synergistic effects between tetramycin and metconazole, in both the in vitro and field experiments were found. Tetramycin could provide an alternative option to control FHB.


Sign in / Sign up

Export Citation Format

Share Document