scholarly journals A Microbial Fermentation Mixture Reduces Fusarium Head Blight and Promotes Grain Weight but does not impact Septoria tritici blotch

Author(s):  
Tony Twamley ◽  
Mark Gaffney ◽  
Angela Feechan

AbstractFusarium graminearum and Zymoseptoria tritici cause economically important diseases of wheat. F. graminearum is one of the primary causal agents of Fusarium head blight (FHB) and Z. tritici is the causal agent of Septoria tritici blotch (STB). Alternative control methods are required in the face of fungicide resistance and EU legislation which seek to cut pesticide use by 2030. Both fungal pathogens have been described as either hemibiotrophs or necrotrophs. A microbial fermentation-based product (MFP) was previously demonstrated to control the biotrophic pathogen powdery mildew, on wheat. Here we investigated if MFP would be effective against the non-biotrophic fungal pathogens of wheat, F. graminearum and Z. tritici. We assessed the impact of MFP on fungal growth, disease control and also evaluated the individual constituent parts of MFP. Antifungal activity towards both pathogens was found in vitro but MFP only significantly decreased disease symptoms of FHB in planta. In addition, MFP was found to improve the grain number and weight, of uninfected and F. graminearum infected wheat heads.

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 40
Author(s):  
Rémi Platel ◽  
Ludovic Chaveriat ◽  
Sarah Le Guenic ◽  
Rutger Pipeleers ◽  
Maryline Magnin-Robert ◽  
...  

The hemibiotrophic fungus Zymoseptoria tritici, responsible for Septoria tritici blotch, is currently the most devastating foliar disease on wheat crops worldwide. Here, we explored, for the first time, the ability of rhamnolipids (RLs) to control this pathogen, using a total of 19 RLs, including a natural RL mixture produced by Pseudomonas aeruginosa and 18 bioinspired RLs synthesized using green chemistry, as well as two related compounds (lauric acid and dodecanol). These compounds were assessed for in vitro antifungal effect, in planta defence elicitation (peroxidase and catalase enzyme activities), and protection efficacy on the wheat-Z. tritici pathosystem. Interestingly, a structure-activity relationship analysis revealed that synthetic RLs with a 12 carbon fatty acid tail were the most effective for all examined biological activities. This highlights the importance of the C12 chain in the bioactivity of RLs, likely by acting on the plasma membranes of both wheat and Z. tritici cells. The efficacy of the most active compound Rh-Est-C12 was 20-fold lower in planta than in vitro; an optimization of the formulation is thus required to increase its effectiveness. No Z. tritici strain-dependent activity was scored for Rh-Est-C12 that exhibited similar antifungal activity levels towards strains differing in their resistance patterns to demethylation inhibitor fungicides, including multi-drug resistance strains. This study reports new insights into the use of bio-inspired RLs to control Z. tritici.


2018 ◽  
Vol 132 (4) ◽  
pp. 1121-1135 ◽  
Author(s):  
Cathérine Pauline Herter ◽  
Erhard Ebmeyer ◽  
Sonja Kollers ◽  
Viktor Korzun ◽  
Tobias Würschum ◽  
...  

2017 ◽  
Author(s):  
Graeme J. Kettles ◽  
Carlos Bayon ◽  
Caroline A. Sparks ◽  
Gail Canning ◽  
Kostya Kanyuka ◽  
...  

Abstract-The fungus Zymoseptoria tritici is the causal agent of Septoria Tritici Blotch (STB) disease of wheat leaves. Z. tritici secretes many functionally uncharacterised effector proteins during infection. Here we characterised a secreted ribonuclease (Zt6) with an unusual biphasic expression pattern.-Transient expression systems were used to characterise Zt6, and mutants thereof, in both host and non-host plants. Cell-free protein expression systems monitored impact of Zt6 protein on functional ribosomes, and in vitro assays of cells treated with recombinant Zt6 determined toxicity against bacteria, yeasts and filamentous fungi.-We demonstrated that Zt6 is a functional ribonuclease and that phytotoxicity is dependent on both the presence of a 22-amino acid N-terminal “loop” region and its catalytic activity. Zt6 selectively cleaves both plant and animal rRNA species, and is toxic to wheat, tobacco, bacterial and yeast cells but not to Z. tritici itself.-Zt6 is the first Z. tritici effector demonstrated to have a likely dual functionality. The expression pattern of Zt6 and potent toxicity towards microorganisms suggests that whilst it may contribute to the execution of wheat cell death, it is also likely to have an important secondary function in antimicrobial competition and niche protection.


2019 ◽  
Vol 58 (1) ◽  
pp. 27-33
Author(s):  
S. Kildea ◽  
D.E. Bucar ◽  
F. Hutton ◽  
S. de la Rosa ◽  
T.E. Welch ◽  
...  

Abstract The emergence and spread of Quinone outside Inhibitor (QoI) fungicide resistance in the Irish Zymoseptoria tritici population in the early 2000s had immediate impacts on the efficacy of the entire group of fungicides for the control of septoria tritici blotch. As a result, a dramatic reduction in the quantities applied to winter wheat occurred in the following seasons. Even in the absence of these fungicides, the frequency of the resistance allele, G143A in the pathogens mtDNA has remained exceptionally high (>97%), and as such, it can be anticipated that continued poor efficacy of current QoI fungicides will be observed. Amongst the isolates with G143A, differences in sensitivity to the QoI pyraclostrobin were observed in vitro. The addition of the alternative oxidase (AOX) inhibitor salicylhydroxamic acid increased sensitivity in these isolates, suggesting some continued impairment of respiration by the QoI fungicides, albeit weak. Interestingly, amongst those tested, the strains from a site with a high frequency of inserts in the MFS1 transporter gene known to enhance QoI efflux did not exhibit this increase in sensitivity. A total of 19 mtDNA haplotypes were detected amongst the 2017 strain collection. Phylogenetic analysis confirmed the suggestion of a common ancestry of all the haplotypes, even though three of the haplotypes contained at least one sensitive strain.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1286-1292 ◽  
Author(s):  
Yangyang Zhao ◽  
Chao Cheng ◽  
Tianping Jiang ◽  
Huiyong Xu ◽  
Yun Chen ◽  
...  

Heat-stable antifungal factor (HSAF), which belongs to the polycyclic tetramate macrolactam family, was isolated from Lysobacter enzymogenes fermentations and exhibited inhibitory activities against a wide range of fungal pathogens. In this study, the antifungal activity of HSAF against Fusarium graminearum in vitro and in vivo was investigated. A total of 50% of mycelial growth of F. graminearum was suppressed with 4.1 μg/ml of HSAF (EC50 value). HSAF treatment resulted in abnormal morphology of the hyphae, such as curling, apical swelling, and depolarized growth. Furthermore, HSAF adequately inhibited conidial germination and conidiation of F. graminearum with an inhibition rate of 100% when 1 and 6 μg/ml of HSAF were applied, respectively. HSAF caused ultrastructural changes of F. graminearum, including cell wall thickening and plasmolysis. Moreover, the application of HSAF significantly controlled Fusarium head blight in wheat caused by F. graminearum in the field. Overall, these results indicate that HSAF has potential for development as a fungicide against F. graminearum.


2018 ◽  
Author(s):  
Yiheng Hu ◽  
Gamran S. Green ◽  
Andrew W. Milgate ◽  
Eric A. Stone ◽  
John P. Rathjen ◽  
...  

ABSTRACTFungal diseases of plants are responsible for major losses in agriculture, highlighting the need for rapid and accurate identification of plant pathogens. Disease outcomes are often defined not only by the main pathogen but are influenced by diverse microbial communities known as the microbiome at sites of infection. Here we present the first use of whole genome shot-gun sequencing with a portable DNA sequencing device as a method for the detection of fungal pathogens from wheat(Triticum aestivum)in a standard molecular biology laboratory. The data revealed that our method is robust and applicable to the diagnosis of fungal diseases including wheat stripe rust (caused byPuccinia striiformisf. sp.tritici),septoria tritici blotch (caused byZymoseptoria tritici)and yellow leaf spot (caused byPyrenophora tritici repentis).We also identified the bacterial genusPseudomonasco-present withPucciniaandZymoseptoriabut notPyrenophorainfections. One limitation of the method is the over-representation of redundant wheat genome sequences from samples. This could be addressed by long-range amplicon-based sequencing approaches in future studies, which specifically target non-host organisms. Our work outlines a new approach for detection of a broad range of plant pathogens and associated microbes using a portable sequencer in a standard laboratory, providing the basis for future development of an on-site disease monitoring system.


Author(s):  
Sujit Jung Karki ◽  
Aisling Reilly ◽  
Binbin Zhou ◽  
Maurizio Mascarello ◽  
James Burke ◽  
...  

Abstract Septoria tritici blotch (STB), caused by the ascomycete fungus Zymoseptoria tritici, is a major threat to wheat production worldwide. The Z. tritici genome encodes many small secreted proteins (ZtSSPs) that are likely to play a key role in the successful colonization of host tissues. However, few of these ZtSSPs have been functionally characterized for their role during infection. In this study, we identified and characterized a small, conserved cysteine-rich secreted effector from Z. tritici which has homologues in other plant pathogens in the Dothideomycetes. ZtSSP2 was expressed throughout Z. tritici infection in wheat, with the highest levels observed early during infection. A yeast two-hybrid assay revealed an interaction between ZtSSP2 and wheat E3 ubiquitin ligase (TaE3UBQ) in yeast, and this was further confirmed in planta using bimolecular fluorescence complementation and co-immunoprecipitation. Down-regulation of this wheat E3 ligase using virus-induced gene silencing increased the susceptibility of wheat to STB. Together, these results suggest that TaE3UBQ is likely to play a role in plant immunity to defend against Z. tritici.


2020 ◽  

This specially curated collection features four reviews of current and key research on fusarium in cereal crops. The first chapter describes how progress can be built over current agricultural practices in integrated pest management plans. It also addresses the disease cycle of Fusarium head blight, host–pathogen interactions, genetic resistance, the role of mycotoxins, as well as the impact of the disease on yields and loss of crop quality. The second chapter reviews current research on the main fungal diseases affecting barley, as well as what we know about the mechanisms of barley genetic resistance to fungal pathogens. It features detailed discussions on biotrophic foliar diseases such as stem rust and powdery mildew and necrotrophic diseases such as spot blotch and Fusarium head blight. The third chapter reviews control measures for Fusarium head blight, wheat blast and powdery mildew, including the development of resistant cultivars. The final chapter considers the current status of global wheat production, the impact of crop loss on food security and the emergence of the current regulatory environment surrounding pesticides. It also features discussions on the current status of the global fungicide market.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 933
Author(s):  
Holger Klink ◽  
Joseph-Alexander Verreet ◽  
Mario Hasler ◽  
Tim Birr

Septoria tritici blotch (STB), caused by Zymoseptoria tritici, is one of the most important foliar wheat diseases worldwide. Current control strategies of STB rely mainly on fungicides, whereby triazoles (demethylation inhibitors; DMIs) have been the backbone in the control of Z. tritici in the last decades. However, in recent years a gradual loss of sensitivity of Z. tritici to several active ingredients of the triazole group has been reported in several European wheat-growing areas. Nevertheless, a new triazole fungicide, namely, mefentrifluconazole, has recently become available in disease management of STB, which belongs to a completely new triazole subclass, the so-called isopropanol triazoles. In this study, the trend in sensitivity development of Z. tritici towards older triazoles (tebuconazole, prothioconazole, and propiconazole) and the new isopropanol triazole mefentrifluconazole was determined in microtiter assays using Z. tritici field populations isolated in 1999, 2009, 2014, and 2020 in a high-disease-pressure and high-fungicide-input area in northern Germany in order to investigate whether the loss of sensitivity of Z. tritici to older triazoles also applies to mefentrifluconazole. For the three triazole fungicides tebuconazole, prothioconazole and propiconazole, a significant shift towards decreasing sensitivity of Z. tritici field populations was observed from 1999 to 2020, whereas the efficacy of mefentrifluconazole in reducing the in vitro fungal growth by 50% (EC50) remained unchanged over the investigated period, demonstrating a stable sensitivity of Z. tritici towards mefentrifluconazole. Although older triazoles are suffering from a loss of sensitivity of Z. tritici field populations due to the selection and spread of less triazole sensitive strains within the Z. tritici population, the efficacy of the new triazole mefentrifluconazole with its unique isopropanol unit was not affected by these changes within the Z. tritici population. Thus, the introduction of such new molecular units could also represent an important contribution for older groups of active ingredients, which previously suffered from a loss of sensitivity.


Sign in / Sign up

Export Citation Format

Share Document