Modelling long-term investment returns via Bayesian infinite mixture time series models

2008 ◽  
Vol 2008 (4) ◽  
pp. 243-282 ◽  
Author(s):  
John W. Lau ◽  
Tak Kuen Siu
Author(s):  
Saeed Zaman

A simple but powerful technique for incorporating a changing underlying inflation trend into standard statistical time series models can improve forecast accuracy significantly—about 20 percent to 30 percent, two to three years out.


2020 ◽  
Vol 146 (6) ◽  
pp. 04020010 ◽  
Author(s):  
Afshin Ashrafzadeh ◽  
Ozgur Kişi ◽  
Pouya Aghelpour ◽  
Seyed Mostafa Biazar ◽  
Mohammadreza Askarizad Masouleh

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Zhang ◽  
Kai Yan ◽  
Dehua Shen

AbstractThis paper incorporates the Baidu Index into various heterogeneous autoregressive type time series models and shows that the Baidu Index is a superior predictor of realized volatility in the SSE 50 Index. Furthermore, the predictability of the Baidu Index is found to rise as the forecasting horizon increases. We also find that continuous components enhance predictive power across all horizons, but that increases are only sustained in the short and medium terms, as the long-term impact on volatility is less persistent. Our findings should be expected to influence investors interested in constructing trading strategies based on realized volatility.


2006 ◽  
Vol 37 (3) ◽  
pp. 205-215 ◽  
Author(s):  
T. Astatkie

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are widely used measures for evaluating the forecasting performance of time series models. Although these absolute measures can be used to compare the performance of competing models, one needs a reference to judge the goodness of the forecasts. In this paper, two relative measures, coefficient of efficiency (E) and index of agreement (d), and their modified versions (EM, EMP, dM and dMP) with desired values of closer to one are presented. These measures are illustrated by comparing the modeling ability and validation forecasting performance of a Nonlinear Additive Autoregressive with Exogenous variables (NAARX), Nested Threshold Autoregressive (NeTAR), and Multiple Nonlinear Inputs Transfer Function (MNITF) models developed for the Jökulsá eystri daily streamflow data. The results suggest that NeTAR describes the system best, and gives better 1- and 2-day ahead validation forecasts. MNITF gives better forecasts for 3-day ahead, and NeTAR and NAARX give comparable performance for 4- and 5-day ahead forecasting. The values of E and d were larger than those of the modified versions, giving a false sense of model performance, and unlike the modified versions, they decreased as forecast lead times increased. Differences among the values of these six relative measures can reveal the sensitiveness of competing models to outliers, and their potential for long-term forecasting. Accordingly, NeTAR was the least sensitive to outliers and NAARX was the most sensitive, with MNITF in between; and NAARX showed the most potential for long-term streamflow forecasting.


Sign in / Sign up

Export Citation Format

Share Document