The Effect of Electron Beam (EB) Irradiation in Presence of TMPTA on Cure Characteristics and Mechanical Properties of Styrene Butadiene Rubber/Recycled Acrylonitrile-Butadiene Rubber (SBR/NBRr) Blends

2010 ◽  
Vol 49 (3) ◽  
pp. 228-236 ◽  
Author(s):  
N. Z. Noriman ◽  
H. Ismail ◽  
C. T. Ratnam ◽  
A. A. Rashid
2002 ◽  
Vol 18 (4) ◽  
pp. 283-296 ◽  
Author(s):  
T.D. Sreeja ◽  
S.K.N. Kutty

The cure characteristics and mechanical properties of short nylon fiber – styrene butadiene rubber/whole tyre reclaim (SBR/WTR) composites with and without an interfacial bonding agent based on 4,4 diphenyl methane diisocyanate and polyethylene glycol (MDI/PEG) have been studied. An 80:40 blend of SBR/WTR reinforced with 20 phr of short nylon fiber has been selected and the MDI/PEG ratio has been changed from 0.67:1 to 2:1. The minimum and maximum torques increased with isocyanate concentration. The scorch time and cure time showed an initial reduction. The cure rate showed an initial improvement. Tensile strength, tear strength and abrasion resistance increased with MDI/PEG ratio, these values were higher in longitudinal direction. Resilience and compression set increased with isocyanate concentration.


2003 ◽  
Vol 76 (2) ◽  
pp. 299-317 ◽  
Author(s):  
A. M. Shanmugharaj ◽  
Anil K. Bhowmick

Abstract Rheometric and mechanical properties, hysteresis and swelling behavior of the Styrene-Butadiene Rubber vulcanizates (SBR) filled with unmodified and novel electron beam modified surface treated dual phase fillers were investigated. Scorch time increases for these modified filler loaded vulcanizates due to introduction of quinone type oxygen on the surface. Electron beam modification of dual phase filler in the absence of trimethylol propanetriacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) significantly improves the modulus of the SBR vulcanizates, whereas the values of tensile strength and elongation at break drop. However, presence of TMPTA or silane slightly increases the modulus with significant improvement in tensile strength. This effect is more pronounced at higher loading of these modified fillers in SBR vulcanizates. These variations in modulus and tensile strength are explained by the equilibrium swelling data, Kraus plot and a new mathematical model interpreting the polymer-filler interaction. Hysteresis loss ratio of SBR vulcanizates loaded with irradiated fillers in absence and presence of TMPTA or silane increases due to highly aggregated structure of the filler.


2005 ◽  
Vol 21 (2) ◽  
pp. 101-115
Author(s):  
Chaoying Wan ◽  
Yong Zhang ◽  
Yin Zhu ◽  
Yinxi Zhang

Four kinds of nano-sized calcium carbonate (CaCO3) surface-modified with stearic acid, aluminate, titanate and aluminate-titanate complex coupling agents, were used to reinforce natural rubber (NR)/styrene-butadiene rubber (SBR) blends. The effects of surface modification and CaCO3 content on the cure characteristics, swelling behaviour, and mechanical properties of NR/SBR blends were studied. The surface modification of CaCO3 improved the processing and mechanical properties, and the stearic acid coated CaCO3 (SA-CaCO3) had finer dispersion and produced a better reinforcement effect than the other modified CaCO3. Furthermore, a commercial high abrasion furnace carbon black (HAF) was used for comparison. The results showed that both CaCO3 and HAF increased the cure rate, reduced the optimum cure time and improved the mechanical properties of NR/SBR blends at appropriate filler contents. The tensile strength of filled NR/SBR composites reached its maximum value when the SA-CaCO3 content was 50 phr or the HAF content was 30 phr. The modulus at 200%, tear strength, and Shore A hardness of filled NR/SBR composites all increased with increasing filler content. The CaCO3 reinforced the NR/SBR blends to some extent, though it was still not as effective as HAF.


Sign in / Sign up

Export Citation Format

Share Document