Cure Characteristics and Mechanical Properties of NR/ SBR Blends Filled with Nano-sized CaCO3

2005 ◽  
Vol 21 (2) ◽  
pp. 101-115
Author(s):  
Chaoying Wan ◽  
Yong Zhang ◽  
Yin Zhu ◽  
Yinxi Zhang

Four kinds of nano-sized calcium carbonate (CaCO3) surface-modified with stearic acid, aluminate, titanate and aluminate-titanate complex coupling agents, were used to reinforce natural rubber (NR)/styrene-butadiene rubber (SBR) blends. The effects of surface modification and CaCO3 content on the cure characteristics, swelling behaviour, and mechanical properties of NR/SBR blends were studied. The surface modification of CaCO3 improved the processing and mechanical properties, and the stearic acid coated CaCO3 (SA-CaCO3) had finer dispersion and produced a better reinforcement effect than the other modified CaCO3. Furthermore, a commercial high abrasion furnace carbon black (HAF) was used for comparison. The results showed that both CaCO3 and HAF increased the cure rate, reduced the optimum cure time and improved the mechanical properties of NR/SBR blends at appropriate filler contents. The tensile strength of filled NR/SBR composites reached its maximum value when the SA-CaCO3 content was 50 phr or the HAF content was 30 phr. The modulus at 200%, tear strength, and Shore A hardness of filled NR/SBR composites all increased with increasing filler content. The CaCO3 reinforced the NR/SBR blends to some extent, though it was still not as effective as HAF.

2016 ◽  
Vol 857 ◽  
pp. 164-168
Author(s):  
N.R. Munirah ◽  
N.Z. Noriman ◽  
M.Z. Salihin ◽  
Sung Ting Sam ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Compatibilizer is one of the processing aids used for rubber compounding which helps the incorporation of filler in rubber. In this study, the effect of trans-polyoctylene rubber (TOR) as compatibilizer on the cure characteristics and swelling behaviour of activated carbon filled styrene butadiene rubber (SBR) vulcanizates were studied as a function of TOR loading. Both uncompatibilized and compatibilized SBR vulcanizates with different TOR loading (2, 4, 6 and 8 phr) were prepared using two-rolls mill at room temperature. It was observed that the cure time (tc90) of compatibilized SBR vulcanizates was shorter than that of the uncompatibilized SBR vulcanizate and decreased with increasing of TOR loading up to 6 phr. The minimum torque (ML) of the uncompatibilized SBR vulcanizate was lower compared to the compatibilized vulcanizates. In contrast, the uncompatibilized SBR vulcanizate has higher maximum torque (MH) compared to the compatibilized SBR vulcanizates. As the TOR contents increased, the ML increased but MH gradually decreased. It was also reported that the value of cure rate index (CRI) of the compatibilized SBR vulcanizates increased with the increment in addition of TOR. The result also showed that the compatibilized SBR vulcanizates had lower crosslink density than that of the uncompatibilized SBR vulcanizate and slightly decreased with increasing TOR loading.


2002 ◽  
Vol 18 (4) ◽  
pp. 283-296 ◽  
Author(s):  
T.D. Sreeja ◽  
S.K.N. Kutty

The cure characteristics and mechanical properties of short nylon fiber – styrene butadiene rubber/whole tyre reclaim (SBR/WTR) composites with and without an interfacial bonding agent based on 4,4 diphenyl methane diisocyanate and polyethylene glycol (MDI/PEG) have been studied. An 80:40 blend of SBR/WTR reinforced with 20 phr of short nylon fiber has been selected and the MDI/PEG ratio has been changed from 0.67:1 to 2:1. The minimum and maximum torques increased with isocyanate concentration. The scorch time and cure time showed an initial reduction. The cure rate showed an initial improvement. Tensile strength, tear strength and abrasion resistance increased with MDI/PEG ratio, these values were higher in longitudinal direction. Resilience and compression set increased with isocyanate concentration.


2015 ◽  
Vol 815 ◽  
pp. 24-28
Author(s):  
N.R. Munirah ◽  
N.Z. Noriman ◽  
M.Z. Salihin ◽  
H. Kamarudin ◽  
M.H. Fatin ◽  
...  

The role of activated carbon (AC) in rubber compounds was investigated to better understand the reinforcing mechanism. The activated carbon filled styrene butadiene rubber vulcanizates (SBR-AC) using bamboo activated carbon as filler were prepared by using two-roll mill and cured at 160 °C. AC filler loading from 10 to 50 phr (part per hundred rubber) were used in this study. Study into the influences of filler loading on the cure characteristics, swelling behaviour and physical properties (hardness and resilience) of SBR-AC vulcanizates were carried out. It was observed that SBR-AC vulcanizates has better cure characteristics compared to the styrene butadiene rubber gum vulcanizate (SBR-GV) which is a non-filled vulcanizate. The results showed that the scorch time (ts2) decreased with increasing filler loading. The cure time (tc90) slightly decreased up to 20 phr before a rise as the filler loading increased. The minimum torque (ML) of SBR vulcanizate increased and the maximum torque (MH) decreased up to 20 phr but then increased with increasing filler loading. The cure rate index (CRI) of SBR-GV vulcanizate was higher than that of all SBR-AC vulcanizates. Up to 20 phr of filler loading, the CRI increased before a decline occurred as the filler loading increased. As expected, the hardness value of SBR-AC vulcanizates was higher compared to SBR-GV vulcanizate which has lower resilience. The hardness and crosslink density showed an increasing trend meanwhile the resilience was adversely affected by the increase in filler loading. Bamboo activated carbon showed some potential enhancement on the reinforcing and physical properties of the vulcanizates.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1040
Author(s):  
Dariusz M. Bieliński ◽  
Katarzyna Klajn ◽  
Tomasz Gozdek ◽  
Rafał Kruszyński ◽  
Marcin Świątkowski

This paper examines the influence of the morphology of zinc oxide nanoparticles (n-ZnO) on the activation energy, vulcanization parameters, crosslink density, crosslink structure, and mechanical properties in the extension of the sulfur vulcanizates of styrene-butadiene rubber (SBR). Scanning electron microscopy was used to determine the particle size distribution and morphology, whereas the specific surface area (SSA) and squalene wettability of the n-ZnO nanoparticles were adequately evaluated using the Brunauer–Emmet–Teller (BET) equation and tensiometry. The n-ZnO were then added to the SBR in conventional (CV) or efficient (EV) vulcanization systems. The vulcametric curves were plotted, from which the cure rate index (CRI) rate of the vulcanization and the activation energy were calculated. The influence on the mechanical properties of the SBR vulcanizates was stronger in the case of the EV curing system than when the CV curing system was used. Of the vulcanizates produced in the EV curing system, the best performance was detected for n-ZnO particles with a hybrid morphology (flat-ended rod-like particles on a “cauliflower” base) and high SSA. Vulcanizates produced using the CV curing system showed slightly better mechanical properties after the addition of nanoparticles with a “cauliflower” morphology than when the rod-like type were used, irrespective of their SSA. In general, nanoparticles with a rod-like structure reduced the activation energy and increased the speed of vulcanization, whereas the cauliflower type slowed the rate of the process and the vulcanizates required a higher activation energy, especially when using the EV system. The crosslink structures were also more clearly modified, as manifested by a reduction in the polysulfidic crosslink content, especially when n-ZnO activators with a rod-like morphology were applied.


2012 ◽  
Vol 51 (12) ◽  
pp. 1218-1222 ◽  
Author(s):  
Changjie Yin ◽  
Qiuyu Zhang ◽  
Junwei Gu ◽  
Zhichao Zhao ◽  
Jucheng Zheng ◽  
...  

2015 ◽  
Vol 3 (4) ◽  
pp. 1-5
Author(s):  
Indra Surya ◽  
Syahrul Fauzi Siregar

By using a semi-efficient vulcanization system, the cure characteristics and crosslink density of natural rubber/styrene butadiene rubber (NR/SBR) blends were studied with a blend ratio from 0 to 100% rubber. The scorch time, optimum cure time, and torque difference value of the blended rubber compounds were determined by using the Moving-Die Rheometer (MDR 2000). The crosslink density was determined by the Flory—Rehner approach. Results indicate that the scorch and cure times, ts2 and t90, of the NR/SBR blends increased with increasing the SBR content. Whilst, the maximum values of torque difference and crosslink density were performed by the NR/SBR blend with a blend ratio of 75/25.


2021 ◽  
Author(s):  
S. Vishvanathperumal ◽  
Anand G

Abstract The main objective of the current research work is to explore the effect of nanosilica particles on the compound EPDM/SBR-SiO2 (ethylene-propylene-diene monomer/styrene-butadiene rubber-nanosilica). The composite EPDM/SBR with and without silane coupling agent was processed using an open mill mixer. The nanosilica particles are prepared in the laboratory and were used as the reinforcing material in EPDM/SBR rubber composites. The cure characteristics, mechanical properties, hardness, rebound resilience, swelling resistance, abrasion resistance and compression set of the composites are completely analyzed and studied. Nanosilic particles are produced in the laboratory and used as reinforcement material in EPDM/SBR rubber compounds. Fully analyzed and examined are the cure characteristics, mechanical properties, hardness, rebound resilience, swelling resistance, abrasion resistance and compression collection of the composites. It was also evident from the result that with the inclusion of nanosilica particles in the EPDM/SBR rubber composites, the mechanical properties, swelling resistance, hardness, abrasion resistance and compression set properties improved.


Sign in / Sign up

Export Citation Format

Share Document