Polypropylene/Poly (Lactic Acid) Semibiocomposites Modified with Two Kinds of Intumescent Flame Retardants

2012 ◽  
Vol 51 (10) ◽  
pp. 991-997 ◽  
Author(s):  
Zhidan Lin ◽  
Chao Chen ◽  
Zixian Guan ◽  
Baofeng Xu ◽  
Xue Li ◽  
...  
Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 876 ◽  
Author(s):  
Benjamin Tawiah ◽  
Bin Yu ◽  
Bin Fei

PLA has become a commodity polymer with wide applications in a number of fields. However, its high flammability with the tendency to flow in fire has limited its viability as a perfect replacement for the petrochemically-engineered plastics. Traditional flame retardants, which may be incorporated into PLA without severely degrading the mechanical properties, are the organo-halogen compounds. Meanwhile, these compounds tend to bioaccumulate and pose a risk to flora and fauna due to their restricted use. Research into PLA flame retardants has largely focused on organic and inorganic compounds for the past few years. Meanwhile, the renewed interest in the development of environmentally sustainable flame retardants (FRs) for PLA has increased significantly in a bid to maintain the integrity of the polymer. A review on the development of new flame retardants for PLA is presented herein. The focus is on metal oxides, phosphorus-based systems, 2D and 1D nanomaterials, hyperbranched polymers, and their combinations, which have been applied for flame retarding PLA are discussed. The paper also reviews briefly the correlation between FR loadings and efficiency for various FR systems, and their effects on processing and mechanical properties.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4271
Author(s):  
Ahmed Z. Naser ◽  
Ibrahim Deiab ◽  
Fantahun Defersha ◽  
Sheng Yang

The high price of petroleum, overconsumption of plastic products, recent climate change regulations, the lack of landfill spaces in addition to the ever-growing population are considered the driving forces for introducing sustainable biodegradable solutions for greener environment. Due to the harmful impact of petroleum waste plastics on human health, environment and ecosystems, societies have been moving towards the adoption of biodegradable natural based polymers whose conversion and consumption are environmentally friendly. Therefore, biodegradable biobased polymers such as poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs) have gained a significant amount of attention in recent years. Nonetheless, some of the vital limitations to the broader use of these biopolymers are that they are less flexible and have less impact resistance when compared to petroleum-based plastics (e.g., polypropylene (PP), high-density polyethylene (HDPE) and polystyrene (PS)). Recent advances have shown that with appropriate modification methods—plasticizers and fillers, polymer blends and nanocomposites, such limitations of both polymers can be overcome. This work is meant to widen the applicability of both polymers by reviewing the available materials on these methods and their impacts with a focus on the mechanical properties. This literature investigation leads to the conclusion that both PLA and PHAs show strong candidacy in expanding their utilizations to potentially substitute petroleum-based plastics in various applications, including but not limited to, food, active packaging, surgical implants, dental, drug delivery, biomedical as well as antistatic and flame retardants applications.


2018 ◽  
Vol 42 (8) ◽  
pp. 914-924 ◽  
Author(s):  
F. Laoutid ◽  
H. Vahabi ◽  
M. Shabanian ◽  
F. Aryanasab ◽  
P. Zarrintaj ◽  
...  

2011 ◽  
Vol 131 (5) ◽  
pp. 395-400 ◽  
Author(s):  
Toru Oi ◽  
Katsuyoshi Shinyama ◽  
Shigetaka Fujita

2014 ◽  
Vol 134 (4) ◽  
pp. 237-242
Author(s):  
Naru Matsugasaki ◽  
Katsuyoshi Shinyama ◽  
Shigetaka Fujita

Sign in / Sign up

Export Citation Format

Share Document