Cognitive Event-Related Potential Responses Differentiate Older Adults with and without Probable Mild Cognitive Impairment

2020 ◽  
pp. 1-20
Author(s):  
Karen L. Bell ◽  
Jennifer Jones Lister ◽  
Rachel Conter ◽  
Aryn L. Harrison Bush ◽  
Jennifer O’Brien
2021 ◽  
Vol 18 ◽  
Author(s):  
Mabel Ngai Kiu Wong ◽  
Daniel Wing Leung Lai ◽  
Henry Ho-Lung Chan ◽  
Bess Yin-Hung Lam

Objective: This study investigated the relationship between neural activities and retinal structures associated with working memory (WM) in older adults with mild cognitive impairment (MCI). Methods: Eleven older adults with MCI and 29 healthy controls (60 to 73 years old) were tested. All participants underwent an event-related potential (ERP) recording while performing the two-back memory task. The Optical coherence tomography angiography (OCT-A) was administered to examine the perfusion and vessel density in the retina. Results: Results showed that WM performance in the MCI group was negatively associated with ERP latencies in central parietal regions (CP6 and CP8) (ps< 0.05). The left nasal vessel and perfusion den- sities were negatively correlated with the latencies in these two central parietal regions and positively related to WM performance only in the MCI group (ps< 0.05). Conclusion: The findings on WM, central parietal brain activity, and left nasal vessel and perfusion densities in the retina help us gain a better understanding of the neural and retinal underpinnings of WM in relation to MCI.


2017 ◽  
Vol 2 (2) ◽  
pp. 110-116
Author(s):  
Valarie B. Fleming ◽  
Joyce L. Harris

Across the breadth of acquired neurogenic communication disorders, mild cognitive impairment (MCI) may go undetected, underreported, and untreated. In addition to stigma and distrust of healthcare systems, other barriers contribute to decreased identification, healthcare access, and service utilization for Hispanic and African American adults with MCI. Speech-language pathologists (SLPs) have significant roles in prevention, education, management, and support of older adults, the population must susceptible to MCI.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 292-293
Author(s):  
Lydia Nguyen ◽  
Shraddha Shende ◽  
Daniel Llano ◽  
Raksha Mudar

Abstract Value-directed strategic processing is important for daily functioning. It allows selective processing of important information and inhibition of irrelevant information. This ability is relatively preserved in normal cognitive aging, but it is unclear if mild cognitive impairment (MCI) affects strategic processing and its underlying neurophysiological mechanisms. The current study examined behavioral and EEG spectral power differences between 16 cognitively normal older adults (CNOA; mean age: 74.5 ± 4.0 years) and 16 individuals with MCI (mean age: 77.1 ± 4.3 years) linked to a value-directed strategic processing task. The task used five unique word lists where words were assigned high- or low-value based on letter case and were presented sequentially while EEG was recorded. Participants were instructed to recall as many words as possible after each list to maximize their score. Results revealed no group differences in recall of low-value words, but individuals with MCI recalled significantly fewer high-value words and total number of words relative to CNOA. Group differences were observed in theta and alpha bands for low-value words, with greater synchronized theta power for CNOA than MCI and greater desynchronized alpha power for MCI than CNOA. Collectively, these findings demonstrate that more effortful neural processing of low-value words in the MCI group, relative to the CNOA group, allowed them to match their behavioral performance to the CNOA group. Individuals with MCI appear to utilize more cognitive resources to inhibit low-value information and might show memory-related benefits if taught strategies to focus on high-value information processing.


2021 ◽  
pp. 1-13
Author(s):  
Alexandra L. Clark ◽  
Alexandra J. Weigand ◽  
Kelsey R. Thomas ◽  
Seraphina K. Solders ◽  
Lisa Delano-Wood ◽  
...  

Background: Age-related cerebrovascular and neuroinflammatory processes have been independently identified as key mechanisms of Alzheimer’s disease (AD), although their interactive effects have yet to be fully examined. Objective: The current study examined 1) the influence of pulse pressure (PP) and inflammatory markers on AD protein levels and 2) links between protein biomarkers and cognitive function in older adults with and without mild cognitive impairment (MCI). Methods: This study included 218 ADNI (81 cognitively normal [CN], 137 MCI) participants who underwent lumbar punctures, apolipoprotein E (APOE) genotyping, and cognitive testing. Cerebrospinal (CSF) levels of eight pro-inflammatory markers were used to create an inflammation composite, and amyloid-beta 1–42 (Aβ 42), phosphorylated tau (p-tau), and total tau (t-tau) were quantified. Results: Multiple regression analyses controlling for age, education, and APOE ɛ4 genotype revealed significant PP x inflammation interactions for t-tau (B = 0.88, p = 0.01) and p-tau (B = 0.84, p = 0.02); higher inflammation was associated with higher levels of tau within the MCI group. However, within the CN group, analyses revealed a significant PP x inflammation interaction for Aβ 42 (B = –1.01, p = 0.02); greater inflammation was associated with higher levels of Aβ 42 (indicative of lower cerebral amyloid burden) in those with lower PP. Finally, higher levels of tau were associated with poorer memory performance within the MCI group only (p s <  0.05). Conclusion: PP and inflammation exert differential effects on AD CSF proteins and provide evidence that vascular risk is associated with greater AD pathology across our sample of CN and MCI older adults.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Jiangyi Xia ◽  
Ali Mazaheri ◽  
Katrien Segaert ◽  
David P Salmon ◽  
Danielle Harvey ◽  
...  

Abstract Reliable biomarkers of memory decline are critical for the early detection of Alzheimer’s disease. Previous work has found three EEG measures, namely the event-related brain potential P600, suppression of oscillatory activity in the alpha frequency range (∼10 Hz) and cross-frequency coupling between low theta/high delta and alpha/beta activity, each of which correlates strongly with verbal learning and memory abilities in healthy elderly and patients with mild cognitive impairment or prodromal Alzheimer’s disease. In the present study, we address the question of whether event-related or oscillatory measures, or a combination thereof, best predict the decline of verbal memory in mild cognitive impairment and Alzheimer’s disease. Single-trial correlation analyses show that despite a similarity in their time courses and sensitivities to word repetition, the P600 and the alpha suppression components are minimally correlated with each other on a trial-by-trial basis (generally |rs| &lt; 0.10). This suggests that they are unlikely to stem from the same neural mechanism. Furthermore, event-related brain potentials constructed from bandpass filtered (delta, theta, alpha, beta or gamma bands) single-trial data indicate that only delta band activity (1–4 Hz) is strongly correlated (r = 0.94, P &lt; 0.001) with the canonical P600 repetition effect; event-related potentials in higher frequency bands are not. Importantly, stepwise multiple regression analyses reveal that the three event-related brain potential/oscillatory measures are complementary in predicting California Verbal Learning Test scores (overall R2’s in 0.45–0.63 range). The present study highlights the importance of combining EEG event-related potential and oscillatory measures to better characterize the multiple mechanisms of memory failure in individuals with mild cognitive impairment or prodromal Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document