Employing long short-term memory and Facebook prophet model in air temperature forecasting

Author(s):  
Toni Toharudin ◽  
Resa Septiani Pontoh ◽  
Rezzy Eko Caraka ◽  
Solichatus Zahroh ◽  
Youngjo Lee ◽  
...  
Author(s):  
Azim Heydari ◽  
Meysam Majidi Nezhad ◽  
Davide Astiaso Garcia ◽  
Farshid Keynia ◽  
Livio De Santoli

AbstractAir pollution monitoring is constantly increasing, giving more and more attention to its consequences on human health. Since Nitrogen dioxide (NO2) and sulfur dioxide (SO2) are the major pollutants, various models have been developed on predicting their potential damages. Nevertheless, providing precise predictions is almost impossible. In this study, a new hybrid intelligent model based on long short-term memory (LSTM) and multi-verse optimization algorithm (MVO) has been developed to predict and analysis the air pollution obtained from Combined Cycle Power Plants. In the proposed model, long short-term memory model is a forecaster engine to predict the amount of produced NO2 and SO2 by the Combined Cycle Power Plant, where the MVO algorithm is used to optimize the LSTM parameters in order to achieve a lower forecasting error. In addition, in order to evaluate the proposed model performance, the model has been applied using real data from a Combined Cycle Power Plant in Kerman, Iran. The datasets include wind speed, air temperature, NO2, and SO2 for five months (May–September 2019) with a time step of 3-h. In addition, the model has been tested based on two different types of input parameters: type (1) includes wind speed, air temperature, and different lagged values of the output variables (NO2 and SO2); type (2) includes just lagged values of the output variables (NO2 and SO2). The obtained results show that the proposed model has higher accuracy than other combined forecasting benchmark models (ENN-PSO, ENN-MVO, and LSTM-PSO) considering different network input variables. Graphic abstract


2022 ◽  
Vol 71 (2) ◽  
pp. 2347-2361
Author(s):  
Malini M. Patil ◽  
P. M. Rekha ◽  
Arun Solanki ◽  
Anand Nayyar ◽  
Basit Qureshi

2020 ◽  
Vol 5 (2) ◽  
pp. 161
Author(s):  
Putu Harry Gunawan ◽  
Devi Munandar ◽  
Anis Zainia Farabiba

Air temperature is one of the main factors for describing the weather behaviour in the earth. Since Indonesia is located on and near equator, then monitoring the air temperature is needed to determine either global climate change occurs or not. Climate change can have an impact on biological growth in various fields. For instance, climate change can affect the quality of production and growth of animal and plants. Therefore, air temperature prediction is important to meteorologists and Indonesian government to provide information in many sectors. Various prediction algorithms have been used to predict temperature and produce different accuracy. In this study, the deep learning method with Long Short-Term Memory (LSTM) model is used to predict air temperature. Here, the results show that LSTM model with one layer and Adaptive Moment Estimation (ADAM) optimizer produce accuracy which is 32% of , 0.068 of MAE and 0.99 of RMSE. Moreover, here, ADAM optimizer is found better than Stochastic Gradient Descent (SGD) optimizer.


Sign in / Sign up

Export Citation Format

Share Document