Investigation of Hypromellose Particle Size Effects on Drug Release from Sustained Release Hydrophilic Matrix Tablets

2007 ◽  
Vol 33 (9) ◽  
pp. 952-958 ◽  
Author(s):  
Shawn A. Mitchell ◽  
Karen M. Balwinski
Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 674 ◽  
Author(s):  
Anna Nardi-Ricart ◽  
Isaac Nofrerias-Roig ◽  
Marc Suñé-Pou ◽  
Pilar Pérez-Lozano ◽  
Montse Miñarro-Carmona ◽  
...  

Hydrophilic matrix tablets are a type of sustained release dosage form characterized by distributing a drug in a matrix that is usually polymeric. Tolcapone is a drug that inhibits the enzyme catechol-O-methyl transferase. In recent years, it has been shown that tolcapone is a potent inhibitor of the amyloid aggregation process of the transthyretin protein, and acts by stabilizing the structure of the protein, reducing the progression of familial amyloid polyneuropathy. The main objective of this study was to obtain a sustained release tablet of tolcapone for oral administration with a preferred dosage regimen of 1 administration every 12 or 24 h and manufactured, preferably, by direct compression. The SeDeM Diagram method has been used for the formulation development of hydrophilic matrix tablets. Given the characteristics of tolcapone, the excipient selected for the formation of the polymeric matrix was a high viscosity hydroxypropylmethylcellulose (Methocel® K100M CR). A decrease in the particle size of tolcapone resulted in a slower dissolution release of the formulation when the concentration of the polymer Methocel® K100M CR was below 29%. These surprising and novel results have given rise to patent number WO/2018/019997.


2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


2021 ◽  
Vol 291 ◽  
pp. 118120
Author(s):  
Qiming Mo ◽  
Xingjian Yang ◽  
Jinjin Wang ◽  
Huijuan Xu ◽  
Wenyan Li ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (79) ◽  
pp. 75541-75551 ◽  
Author(s):  
Feng Jiang ◽  
Jian Cai ◽  
Bing Liu ◽  
Yuebing Xu ◽  
Xiaohao Liu

Palladium particles of different sizes obtained directly and indirectly by various methods were studied to clarify the particle size effect in the selective hydrogenation of cinnamaldehyde (CAL).


1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


2008 ◽  
Vol 147 (7-8) ◽  
pp. 258-261 ◽  
Author(s):  
Jiyin Zhao ◽  
Lei Shi ◽  
Shiming Zhou ◽  
Laifa He ◽  
Lin Chen

Sign in / Sign up

Export Citation Format

Share Document