Preparation and In Vitro Evaluation of a New Fentanyl Patch Based on Acrylic/Silicone Pressure-Sensitive Adhesive Blends

2009 ◽  
Vol 35 (4) ◽  
pp. 487-498 ◽  
Author(s):  
Seyed Mojtaba Taghizadeh ◽  
Arezou Soroushnia ◽  
Hamid Mirzadeh ◽  
Mehdi Barikani
2012 ◽  
Vol 506 ◽  
pp. 533-536
Author(s):  
Nanthida Wonglertnirant ◽  
S. Tipwichai ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Suwannee Panomsuk ◽  
...  

Ketoprofen transdermal patches (KTPs) were fabricated using an acrylic pressure sensitive adhesive (PSA) polymer. The influence of different factors (amount of PSA, drug content, and pressure applying on the backing membrane during preparation) on the characteristics of ketoprofen patch (thickness, W/A ratio, and adhesiveness of matrix film) and in vitro drug release behavior were investigated. The results revealed the successful fabrication and a good physical appearance of KTPs using acrylic PSA. Microscopic observations, FTIR spectra, and DSC thermograms were permitted to demonstrate that the drug was dispersed molecularly in the polymer. As the amount of PSA in the adhesive matrix was increased, the release rate of ketoprofen was decreased. Contrarily, the drug release rate was increased corresponding to the increase of ketoprofen content in the adhesive matrix. There was no significant difference in the release rate when the pressure applying on the backing membrane was varied. The kinetic of ketoprofen release from acrylic matrix type transdermal patches followed the Higuchis diffusion model.


Author(s):  
Vipulbhai Mandli ◽  
Shailesh T. Prajapati

The purpose of this research was to prepare and evaluate monolithic drug-in-adhesive type patches of Rasagiline Mesylate (RM) containing penetration enhancer and having seven day wear property. Preformulation studies like solubility in permeation enhancers, compatibility study, transmission study, uptake study and crystallization study of Rasagiline Mesylate in various pressure sensitive adhesive polymers were performed. Transdermal system was prepared by solvent casting method. The effects of various permeation enhancers (Propylene Glycol, Oleic Acid, Isopropyl Palmitate, and lauryl lactate) on the ex-vivo transcutaneous absorption of Rasagiline Mesylate through human cadaver skin were evaluated by modified Franz diffusion cell system. Ex-vivo transcutaneous absorption of prepared transdermal patch was performed using different concentration of Lauryl lactate (3%, 5%, and 7%). In-vitro Adhesion testing (Peel, tack shear etc.) was performed on different dry GSM (Grams per Square Meter) of patch like 80GSM, 100 GSM and 150 GSM. The final transdermal patches were tested for appearance, weight of matrix, thickness, % assay of drug content, in-vitro adhesion testing, cold flow study and ex-vivo skin permeation studies. Based on crystallization study and adhesion testing, Durotak-4098 (14% drug concentration) was selected as pressure sensitive adhesive. Patch containing Lauryl lactate showed highest cumulative permeation compared to other permeation enhancers. The patch containing 5% laurel lactate showed greater transdermal flux (2.36 µg/cm2 /hr). Patch with 150 dry GSM showing promising adhesion properties. Backing film Scotchpak 9723 and release liner Saint Gobain 8310 was selected based on transmission and uptake study of Rasagiline Mesylate. Stability study indicates that developed formulation remains stable. In conclusion, the present research confirms the practicability of developing Rasagiline Mesylate transdermal system.


2011 ◽  
Vol 197-198 ◽  
pp. 1217-1220
Author(s):  
Ponwanit Jarenputtakrun ◽  
Praneet Opanasopit ◽  
Suwannee Panomsuk ◽  
Tanasait Ngawhirunpat

The aim of this study was to prepare and investigate the isosorbide dinitrate transdermal patches (IDPs) in the concentration of 40 mg/cm2. Acrylic pressure sensitive adhesives (PSA) were used to formulate IDPs. IDPs were prepared by casting method. The effect of content of PSA, and concentration of enhancer, propylene glycol, in the formulations were evaluated. IDPs were investigated for their thickness, weight/area ratio, adhesiveness and in vitro skin permeation. The higher the content of PSA in the formulation, the higher the thickness and the W/A ratio. Propylene glycol added in the formulation (2.5, 5, 10%) significantly enhanced the skin permeation of ISDN. The higher the content of PG, the higher the flux of ISDN through the skin. Our research suggests that isosorbide dinitrate loaded with 10% of propylene glycol in acrylic matrix pressure sensitive adhesive can be potentially used as a transdermal drug delivery system.


Sign in / Sign up

Export Citation Format

Share Document