Formulation and Evaluation of Isosorbide Dinitrate Acrylic Matrix Transdermal Patches

2011 ◽  
Vol 197-198 ◽  
pp. 1217-1220
Author(s):  
Ponwanit Jarenputtakrun ◽  
Praneet Opanasopit ◽  
Suwannee Panomsuk ◽  
Tanasait Ngawhirunpat

The aim of this study was to prepare and investigate the isosorbide dinitrate transdermal patches (IDPs) in the concentration of 40 mg/cm2. Acrylic pressure sensitive adhesives (PSA) were used to formulate IDPs. IDPs were prepared by casting method. The effect of content of PSA, and concentration of enhancer, propylene glycol, in the formulations were evaluated. IDPs were investigated for their thickness, weight/area ratio, adhesiveness and in vitro skin permeation. The higher the content of PSA in the formulation, the higher the thickness and the W/A ratio. Propylene glycol added in the formulation (2.5, 5, 10%) significantly enhanced the skin permeation of ISDN. The higher the content of PG, the higher the flux of ISDN through the skin. Our research suggests that isosorbide dinitrate loaded with 10% of propylene glycol in acrylic matrix pressure sensitive adhesive can be potentially used as a transdermal drug delivery system.

2018 ◽  
Vol 10 (1) ◽  
pp. 67
Author(s):  
Bhawana Sethi ◽  
Rupa Mazumder

Objective: The present work was aimed at preparation of transdermal patches by a solvent casting method using a varying concentration of polymers i.e. methocel (K15 and K100), ethocel (4 and 10), gelatin, chitosan, eudragit (RL and RS) grade using plasticizer (glycerin and propylene glycol).Methods: The ratio of drug to polymers and plasticizer was varied and the effect of formulation variables was studied. Prepared transdermal patches were evaluated for physicochemical properties, in-vitro permeation studies, content uniformity, primary skin irritation studies and FT-IR studies.Results: The formulated transdermal patch by using Methocel K 100 M showed good physical properties. The average weight of patches prepared using glycerin as a plasticizer were ranged from 42.33-67.00 mg and propylene glycol as a plasticizer were ranged from 40.67-67.67 mg. The percentage moisture absorption varies from 1.76 to 10.73 for patches formulated using glycerin and 2.28 to 7.97 for propylene glycol patches. The percentage moisture loss from patches prepared using glycerin was ranged from 2.75 to 11.54 and 2.87 to 12.02 from propylene glycol. The water vapour transmission rate from patches prepared using glycerin was ranged from 0.25 to 0.92 and 0.41 to 1.76. The formulated patch showed the acceptable quantity of medicament ranged from (100.20-101.05%). This result met the test content uniformity as per BP (85% to 115%). According to that, the drug was consistent throughout the patches. The formulation PGD is considered as the best formulation, since it shows a maximum in vitro drug release as 43.75 % at 24 h. The drug release kinetics studied showed that the majority of formulations was following zero order.Conclusion: In conclusion, controlled release transdermal drug delivery system patches of aliskiren can be prepared using polymer combinations, with a different plasticizer. The release rate of drug depends upon the polymer. However, release kinetics followed zero order.


2012 ◽  
Vol 506 ◽  
pp. 533-536
Author(s):  
Nanthida Wonglertnirant ◽  
S. Tipwichai ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Suwannee Panomsuk ◽  
...  

Ketoprofen transdermal patches (KTPs) were fabricated using an acrylic pressure sensitive adhesive (PSA) polymer. The influence of different factors (amount of PSA, drug content, and pressure applying on the backing membrane during preparation) on the characteristics of ketoprofen patch (thickness, W/A ratio, and adhesiveness of matrix film) and in vitro drug release behavior were investigated. The results revealed the successful fabrication and a good physical appearance of KTPs using acrylic PSA. Microscopic observations, FTIR spectra, and DSC thermograms were permitted to demonstrate that the drug was dispersed molecularly in the polymer. As the amount of PSA in the adhesive matrix was increased, the release rate of ketoprofen was decreased. Contrarily, the drug release rate was increased corresponding to the increase of ketoprofen content in the adhesive matrix. There was no significant difference in the release rate when the pressure applying on the backing membrane was varied. The kinetic of ketoprofen release from acrylic matrix type transdermal patches followed the Higuchis diffusion model.


2021 ◽  
Vol 22 (21) ◽  
pp. 11840
Author(s):  
Paula Ossowicz-Rupniewska ◽  
Paulina Bednarczyk ◽  
Małgorzata Nowak ◽  
Anna Nowak ◽  
Wiktoria Duchnik ◽  
...  

This study aimed to investigate the potential of photoreactive acrylate patches as systems for transdermal drug delivery, in particular, using more renewable alternatives and more environmentally friendly synthesis routes of transdermal patches. Therefore, the aim of this study was to develop a transdermal patch containing ibuprofen and investigate its performance in vitro through the pigskin. Transparent patches were prepared using four acrylate copolymers with an incorporated photoinitiator. Two types of transdermal patches based on the photocrosslinking acrylic prepolymers with isobornyl methacrylate as biocomponent and monomer increasing Tg (“hard”) were manufactured. The obtained patches were characterized for their adhesive properties and tested for permeability of the active substance. It turns out that patches whose adhesive matrix is photoreactive polyacrylate copolymers have a higher cohesion than patches from commercial adhesives, while the modification of the copolymers with isobornyl methacrylate resulted in an improvement in adhesion and tack. This study demonstrates the feasibility of developing photoreactive acrylic-based transdermal patches that contain biocomponents that can deliver a therapeutically relevant dose of ibuprofen.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (10) ◽  
pp. 631-639
Author(s):  
MOHAMMAD HADI ARYAIE MONFARED ◽  
HOSSEIN RESALATI ◽  
ALI GHASEMIAN ◽  
MARTIN A. HUBBE

This study investigated the addition of acrylic fiber to old corrugated container (OCC) pulp as a possible means of overcoming adverse effects of water-based pressure sensitive adhesives during manufacture of paper or paperboard. Such adhesives can constitute a main source of stickies, which hurt the efficiency of the papermaking process and make tacky spots in the product. The highest amount of acrylic fiber added to recycled pulps generally resulted in a 77% reduction in accepted pulp microstickies. The addition of acrylic fibers also increased pulp freeness, tear index, burst strength, and breaking length, though there was a reduction in screen yield. Hence, in addition to controlling the adverse effects of stickies, the addition of acrylic fibers resulted in the improvement of the mechanical properties of paper compared with a control sample.


Author(s):  
Takamasa Suzuki ◽  
Tomohiro Aoki ◽  
Masato Saito ◽  
Ichiro Hijikuro ◽  
Shoko Itakura ◽  
...  

2018 ◽  
Vol 10 (4) ◽  
pp. 68
Author(s):  
Manish Kumar ◽  
Vishal Trivedi ◽  
Ajay Kumar Shukla ◽  
Suresh Kumar Dev

Objective: The objective of this research work was to develop a transdermal drug delivery system containing atenolol with different ratios of hydrophilic and hydrophobic polymeric combinations, using solvent evaporation technique and to examine the effect of hydrophilicity and hydrophobicity of polymers on the physicochemical and drug release properties of transdermal patches.Methods: Solvent casting method has been used to formulate transdermal patches. Hydroxypropyl methylcellulose (HPMC), Polyvinylpyrrolidone (PVP), Ethylcellulose (EC) in different combination ratios were used as the polymer. Propylene glycol was used as a plasticizer. Permeation enhancers such as span 80 were used to enhance permeation through the skin. In vitro diffusion study was carried out by franz diffusion cell using egg membrane as a semi-permeable membrane for diffusion.Results: Result showed that the thickness of the all batch of patches varied from 0.32 to 0.39 mm with uniformity of thickness in each formulation. Formulations F1 to F3 had high moisture content varied from 2.07±0.09 to 2.56±0.15 and high moisture uptake value varied from 3.21±0.35 to 4.09±0.38, due to a higher concentration of hydrophilic polymers. Drug content of all batches was ranged between 85.92±1.32 to 95.71±1.42. Folding endurance values off all batches were more than 75. Formulation batches F1 to F3 showed higher cumulative drug release varied from 61.34% to 68.11% as compared to formulation batches F4 to F6.Conclusion: Higher proportion of hydrophilic polymer in the formulation of transdermal patches, gives higher percentage drug release from prepared patches. The finding of the study indicates that hydrophilicity and hydrophobicity of polymer effects the physicochemical and drug release properties of transdermal patches and an optimum proportion of hydrophilic and hydrophobic polymer is required for the preparation of effective transdermal patches. 


2007 ◽  
Vol 9 (2) ◽  
pp. 5-9 ◽  
Author(s):  
Roland Milker ◽  
Zbigniew Czech ◽  
Marta Wesołowska

Synthesis of photoreactive solvent-free acrylic pressure-sensitive adhesives in the recovered system The present paper discloses a novel photoreactive solvent-free acrylic pressure-sensitive adhesive (PSA) systems, especially suitable for the so much adhesive film applications as the double-sided, single-sided or carrier-free technical tapes, self-adhesive labels, protective films, marking and sign films and wide range of medical products. The novel photoreactive solvent-free pressure-sensitive adhesives contain no volatile organic compounds (residue monomers or organic solvent) and comply with the environment and legislation. The synthesis of this new type of acrylic PSA is conducted in common practice by solvent polymerisation. After the organic solvent are removed, there remains a non-volatile, solvent-free highly viscous material, which can be processed on a hot-melt coating machine at the temperatures of about 100 to 140°C.


2020 ◽  
Vol 586 ◽  
pp. 119607
Author(s):  
Umberto M. Musazzi ◽  
Marco A. Ortenzi ◽  
Chiara G.M. Gennari ◽  
Antonella Casiraghi ◽  
Paola Minghetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document