Study on the transdermal penetration mechanism of ibuprofen nanoemulsions

2018 ◽  
Vol 45 (3) ◽  
pp. 465-473
Author(s):  
Li Zhengguang ◽  
Huang Jie ◽  
Zhang Yong ◽  
Cao Jiaojiao ◽  
Wang Xingqi ◽  
...  
2018 ◽  
Vol 19 (7) ◽  
pp. 2138 ◽  
Author(s):  
Noriaki Nagai ◽  
Fumihiko Ogata ◽  
Miyu Ishii ◽  
Yuya Fukuoka ◽  
Hiroko Otake ◽  
...  

We previously designed a novel transdermal formulation containing ketoprofen solid nanoparticles (KET-NPs formulation), and showed that the skin penetration from the KET-NPs formulation was higher than that of a transdermal formulation containing ketoprofen microparticles (KET-MPs formulation). However, the precise mechanism for the skin penetration from the KET-NPs formulation was not clear. In this study we investigated whether energy-dependent endocytosis relates to the transdermal delivery from a 1.5% KET-NPs formulation. Transdermal formulations were prepared by a bead mill method using additives including methylcellulose and carbopol 934. The mean particle size of the ketoprofen nanoparticles was 98.3 nm. Four inhibitors of endocytosis dissolved in 0.5% DMSO (54 μM nystatin, a caveolae-mediated endocytosis inhibitor; 40 μM dynasore, a clathrin-mediated endocytosis inhibitor; 2 μM rottlerin, a macropinocytosis inhibitor; 10 μM cytochalasin D, a phagocytosis inhibitor) were used in this study. In the transdermal penetration study using a Franz diffusion cell, skin penetration through rat skin treated with cytochalasin D was similar to the control (DMSO) group. In contrast to the results for cytochalasin D, skin penetration from the KET-NPs formulation was significantly decreased by treatment with nystatin, dynasore or rottlerin with penetrated ketoprofen concentration-time curves (AUC) values 65%, 69% and 73% of control, respectively. Furthermore, multi-treatment with all three inhibitors (nystatin, dynasore and rottlerin) strongly suppressed the skin penetration from the KET-NPs formulation with an AUC value 13.4% that of the control. In conclusion, we found that caveolae-mediated endocytosis, clathrin-mediated endocytosis and macropinocytosis are all related to the skin penetration from the KET-NPs formulation. These findings provide significant information for the design of nanomedicines in transdermal formulations.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1633
Author(s):  
Ralph W. Eckert ◽  
Sabrina Wiemann ◽  
Cornelia M. Keck

Poor aqueous solubility of active compounds is a major issue in today’s drug delivery. In this study the smartFilm-technology was exploited to improve the dermal penetration efficacy of a poorly soluble active compound (curcumin). Results were compared to the dermal penetration efficacy of curcumin from curcumin bulk suspensions and nanocrystals, respectively. The smartFilms enabled an effective dermal and transdermal penetration of curcumin, whereas curcumin bulk- and nanosuspensions were less efficient when the curcumin content was similar to the curcumin content in the smartFilms. Interestingly, it was found that increasing numbers of curcumin particles within the suspensions increased the passive dermal penetration of curcumin. The effect is caused by an aqueous meniscus that is created between particle and skin if the dispersion medium evaporates. The connecting liquid meniscus causes a local swelling of the stratum corneum and maintains a high local concentration gradient between drug particles and skin. Thus, leading to a high local passive dermal penetration of curcumin. The findings suggest a new dermal penetration mechanism for active compounds from nano-particulate drug delivery systems, which can be the base for the development of topical drug products with improved penetration efficacy in the future.


2014 ◽  
Vol 118 (12) ◽  
pp. 6201-6206 ◽  
Author(s):  
Ping Wu ◽  
Xiaofang Zhai ◽  
Zhenyu Li ◽  
Jinlong Yang

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Gábor Erős ◽  
Petra Hartmann ◽  
Szilvia Berkó ◽  
Eszter Csizmazia ◽  
Erzsébet Csányi ◽  
...  

Enhancement of the transdermal penetration of different active agents is an important research goal. Our aim was to establish a novelin vivoexperimental model which provides a possibility for exact measurement of the quantity of penetrated drug. The experiments were performed on SKH-1 hairless mice. A skin fold in the dorsal region was fixed with two fenestrated titanium plates. A circular wound was made on one side of the skin fold. A metal cylinder with phosphate buffer was fixed into the window of the titanium plate. The concentration of penetrated drug was measured in the buffer. The skin fold was morphologically intact and had a healthy microcirculation. The drug appeared in the acceptor buffer after 30 min, and its concentration exhibited a continuous increase. The presence of ibuprofen was also detected in the plasma. In conclusion, this model allows an exactin vivostudy of drug penetration and absorption.


2010 ◽  
Author(s):  
Katerina Brychtova ◽  
Jozef Csollei ◽  
Josef Jampilek ◽  
Lukas Placek ◽  
Radka Opatrilova

2016 ◽  
Vol 22 (4) ◽  
pp. 447-453 ◽  
Author(s):  
Xiaochun Hou ◽  
Shiying Liu ◽  
Min Wang ◽  
Christian Wiraja ◽  
Wei Huang ◽  
...  

Nanoparticles are emerging transdermal delivery systems. Their size and surface properties determine their efficacy and efficiency to penetrate through the skin layers. This work utilizes three-dimensional (3D) bioprinting technology to generate a simplified artificial skin model to rapidly screen nanoparticles for their transdermal penetration ability. Specifically, this model is built through layer-by-layer alternate printing of blank collagen hydrogel and fibroblasts. Through controlling valve on-time, the spacing between printing lines could be accurately tuned, which could enable modulation of cell infiltration in the future. To confirm the effectiveness of this platform, a 3D construct with one layer of fibroblasts sandwiched between two layers of collagen hydrogel is used to screen silica nanoparticles with different surface charges for their penetration ability, with positively charged nanoparticles demonstrating deeper penetration, consistent with the observation from an existing study involving living skin tissue.


Sign in / Sign up

Export Citation Format

Share Document