Optimal nitrogen rate for rice production by traded-off analysis between rice yield and environmental cost: a case study in Tai Lake region

Author(s):  
Linxian Liao ◽  
Ning Gao ◽  
Hang Guo ◽  
Fazli Hameed ◽  
Qi Liao ◽  
...  
2012 ◽  
Vol 360 (1-2) ◽  
pp. 37-53 ◽  
Author(s):  
Jia Deng ◽  
Zaixing Zhou ◽  
Xunhua Zheng ◽  
Chunyan Liu ◽  
Zhisheng Yao ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 777
Author(s):  
Erythrina Erythrina ◽  
Arif Anshori ◽  
Charles Y. Bora ◽  
Dina O. Dewi ◽  
Martina S. Lestari ◽  
...  

In this study, we aimed to improve rice farmers’ productivity and profitability in rainfed lowlands through appropriate crop and nutrient management by closing the rice yield gap during the dry season in the rainfed lowlands of Indonesia. The Integrated Crop Management package, involving recommended practices (RP) from the Indonesian Agency for Agricultural Research and Development (IAARD), were compared to the farmers’ current practices at ten farmer-participatory demonstration plots across ten provinces of Indonesia in 2019. The farmers’ practices (FP) usually involved using old varieties in their remaining land and following their existing fertilizer management methods. The results indicate that improved varieties and nutrient best management practices in rice production, along with water reservoir infrastructure and information access, contribute to increasing the productivity and profitability of rice farming. The mean rice yield increased significantly with RP compared with FP by 1.9 t ha–1 (ranges between 1.476 to 2.344 t ha–1), and net returns increased, after deducting the cost of fertilizers and machinery used for irrigation supplements, by USD 656 ha–1 (ranges between USD 266.1 to 867.9 ha–1) per crop cycle. This represents an exploitable yield gap of 37%. Disaggregated by the wet climate of western Indonesia and eastern Indonesia’s dry climate, the RP increased rice productivity by 1.8 and 2.0 t ha–1, with an additional net return gain per cycle of USD 600 and 712 ha–1, respectively. These results suggest that there is considerable potential to increase the rice production output from lowland rainfed rice systems by increasing cropping intensity and productivity. Here, we lay out the potential for site-specific variety and nutrient management with appropriate crop and supplemental irrigation as an ICM package, reducing the yield gap and increasing farmers’ yield and income during the dry season in Indonesia’s rainfed-prone areas.


Author(s):  
Xue Hu ◽  
Hongyi Liu ◽  
Chengyu Xu ◽  
Xiaomin Huang ◽  
Min Jiang ◽  
...  

Few studies have focused on the combined application of digestate and straw and its feasibility in rice production. Therefore, we conducted a two-year field experiment, including six treatments: without nutrients and straw (Control), digestate (D), digestate + fertilizer (DF), digestate + straw (DS), digestate + fertilizer + straw (DFS) and conventional fertilizer + straw (CS), to clarify the responses of rice growth and paddy soil nutrients to different straw and fertilizer combinations. Our results showed that digestate and straw combined application (i.e., treatment DFS) increased rice yield by 2.71 t ha−1 compared with the Control, and digestate combined with straw addition could distribute more nitrogen (N) to rice grains. Our results also showed that the straw decomposition rate at 0 cm depth under DS was 5% to 102% higher than that under CS. Activities of catalase, urease, sucrase and phosphatase at maturity under DS were all higher than that under both Control and CS. In addition, soil organic matter (SOM) and total nitrogen (TN) under DS and DFS were 20~26% and 11~12% higher than that under B and DF respectively, suggesting straw addition could benefit paddy soil quality. Moreover, coupling straw and digestate would contribute to decrease the N content in soil surface water. Overall, our results demonstrated that digestate and straw combined application could maintain rice production and have potential positive paddy environmental effects.


Author(s):  
Padam Prasad Paudel ◽  
Dharma Raj Pokhrel ◽  
Sajan Koirala ◽  
Lalan Baitha ◽  
Dae Hyun Kim ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


2009 ◽  
Vol 9 (5) ◽  
pp. 433-442 ◽  
Author(s):  
Song Li ◽  
Hua Li ◽  
Xingqiang Liang ◽  
Yingxu Chen ◽  
Zhihong Cao ◽  
...  

2017 ◽  
Vol 31 (5) ◽  
pp. 658-665
Author(s):  
Mason L. Young ◽  
Jason K. Norsworthy ◽  
Robert C. Scott ◽  
Lon T. Barber

Benzobicyclon is the first 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide pursued for commercial registration in U.S. rice production. A study was conducted in 2015 and 2016 to evaluate the response of eight rice cultivars to post-flood application timings of benzobicyclon at 494 g ai ha-1(proposed 2X rate). ‘Caffey’, ‘CL151’, ‘CLXL745’, ‘Jupiter’, ‘LaKast’, ‘Mermentau’, ‘Roy J’, and ‘XL753’ were evaluated in response to applications of benzobicyclon. The highest level of visible injury was observed in LaKast at 7% in 2015. No visible injury was detected among other cultivars either year at 2 weeks after treatment. In 2015 and 2016, no more than a four-day delay to reach 50% heading occurred across all cultivars. Rough rice yield was not affected by any of the post-flood application timings of benzobicyclon. A second study was conducted in 2016 at three locations throughout Arkansas to investigate the tolerance of 19tropical japonica(inbred and hybrid) and twoindicainbred cultivars to a premix containing benzobicyclon at 494 g ai ha-1and halosulfuron at 72 g ai ha-1 applied 1 week after flooding. Thetropical japonicacultivars have excellent crop safety to benzobicyclon while application to theindicacultivars, Rondo and Purple Marker, expressed severe phytotoxicity. Benzobicyclon caused less than a 2 d delay in heading to thejaponicacultivars. Rough rice yield of thetropical japonicacultivars was not affected by benzobicyclon while yields of bothindicacultivars were negatively affected. Benzobicyclon can safely be applied to drill-seededtropical japonicainbred and hybrid cultivars in a post-flood application without concerns for crop injury. Benzobicyclon should not be used onindicacultivars as it will cause severe injury, delayed heading, and yield loss.


2011 ◽  
Vol 8 (11) ◽  
pp. 3159-3168 ◽  
Author(s):  
Y. Xia ◽  
X. Yan

Abstract. Nitrogen (N) fertilizer plays an important role in agricultural systems in terms of food yield. However, N application rates (NARs) are often overestimated over the rice (Oryza sativa L.) growing season in the Taihu Lake region of China. This is largely because negative externalities are not entirely included when evaluating economically-optimal nitrogen rate (EONR), such as only individual N losses are taken into account, or the inventory flows of reactive N have been limited solely to the farming process when evaluating environmental and economic effects of N fertilizer. This study integrates important material and energy flows resulting from N use into a rice agricultural inventory that constitutes the hub of the life-cycle assessment (LCA) method. An economic evaluation is used to determine an environmental and economic NAR for the Taihu Lake region. The analysis reveals that production and exploitation processes consume the largest proportion of resources, accounting for 77.2 % and 22.3 % of total resources, respectively. Regarding environmental impact, global warming creates the highest cost with contributions stemming mostly from fertilizer production and farming processes. Farming process incurs the biggest environmental impact of the three environmental impact categories considered, whereas transportation has a much smaller effect. When taking account of resource consumption and environmental cost, the marginal benefit of 1 kg rice would decrease from 2.4 to only 1.05 yuan. Accordingly, our current EONR has been evaluated at 187 kg N ha−1 for a single rice-growing season. This could enhance profitability, as well as reduce the N losses associated with rice growing.


2005 ◽  
Vol 13 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Huanchao Zhang ◽  
Fuliang Cao ◽  
Shengzuo Fang ◽  
Gaiping Wang ◽  
Hongai Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document