A Preliminary Report on Deep Water Fishing off the North Kenya Coast

1958 ◽  
Vol 24 (1) ◽  
pp. 61-63 ◽  
Author(s):  
F. Williams
1998 ◽  
Vol 180 ◽  
pp. 163-167
Author(s):  
Antoon Kuijpers ◽  
Jørn Bo Jensen ◽  
Simon R . Troelstra ◽  
And shipboard scientific party of RV Professor Logachev and RV Dana

Direct interaction between the atmosphere and the deep ocean basins takes place today only in the Southern Ocean near the Antarctic continent and in the northern extremity of the North Atlantic Ocean, notably in the Norwegian–Greenland Sea and Labrador Sea. Cooling and evaporation cause surface waters in the latter region to become dense and sink. At depth, further mixing occurs with Arctic water masses from adjacent polar shelves. Export of these water masses from the Norwegian–Greenland Sea (Norwegian Sea Overflow Water) to the North Atlantic basin occurs via two major gateways, the Denmark Strait system and the Faeroe– Shetland Channel and Faeroe Bank Channel system (e.g. Dickson et al. 1990; Fig.1). Deep convection in the Labrador Sea produces intermediate waters (Labrador Sea Water), which spreads across the North Atlantic. Deep waters thus formed in the North Atlantic (North Atlantic Deep Water) constitute an essential component of a global ‘conveyor’ belt extending from the North Atlantic via the Southern and Indian Oceans to the Pacific. Water masses return as a (warm) surface water flow. In the North Atlantic this is the Gulf Stream and the relatively warm and saline North Atlantic Current. Numerous palaeo-oceanographic studies have indicated that climatic changes in the North Atlantic region are closely related to changes in surface circulation and in the production of North Atlantic Deep Water. Abrupt shut-down of the ocean-overturning and subsequently of the conveyor belt is believed to represent a potential explanation for rapid climate deterioration at high latitudes, such as those that caused the Quaternary ice ages. Here it should be noted, that significant changes in deep convection in Greenland waters have also recently occurred. While in the Greenland Sea deep water formation over the last decade has drastically decreased, a strong increase of deep convection has simultaneously been observed in the Labrador Sea (Sy et al. 1997).


Sedimentology ◽  
2002 ◽  
Vol 49 (4) ◽  
pp. 669-695 ◽  
Author(s):  
Russell B. Wynn ◽  
Philip P. E. Weaver ◽  
Douglas G. Masson ◽  
Dorrik A. V. Stow

1971 ◽  
Vol 36 (2) ◽  
pp. 170-182 ◽  
Author(s):  
David A. Breternitz ◽  
Alan C. Swedlund ◽  
Duane C. Anderson

AbstractAn isolated burial was excavated from the bank of a tributary of Gordon Creek, Roosevelt National Forest, northern Colorado. A preliminary report was prepared (D. Anderson 1966, 1967) but further analysis of the skeletal material and newly obtained cultural information add significantly to the documentation of the burial.The body of a woman, aged 25-30 years, was given primary interment in a pit coated with red ocher. The body was placed on its left side with the head to the north, was tightly flexed, and was also coated with red ocher. Burial accompaniments include a large precussion flaked biface or preform, a small biface used as a scraping tool, a hammerstone, an end scraper, a preform with fire pocks, cut and incised animal ribs, and a perforated elk incisor. A radiocarbon assay of bone material from the left ilium produced an age of 9700± 250 radiocarbon years: 7750 B.C. (GX-0530).No indications of habitation which might be associated with the burial were located in its immediate vicinity.A reconstruction of the burial ritual is attempted, and the skeletal remains are compared to other early human remains from North America.A summary of this paper was given at the 34th Annual Meeting of the Society for American Archaeology, May 3, 1969, in Milwaukee, Wisconsin.


2021 ◽  
Author(s):  
Catherine Drinkorn ◽  
Jan Saynisch-Wagner ◽  
Gabriele Uenzelmann-Neben ◽  
Maik Thomas

<p>Ocean sediment drifts contain important information about past bottom currents but a direct link from the study of sedimentary archives to ocean dynamics is not always possible. To close this gap for the North Atlantic, we set up a  new coupled Ice-Ocean-Sediment Model of the entire Pan-Arctic region. In order to evaluate the potential dynamics of the model, we conducted decadal sensitivity experiments. In our model contouritic sedimentation shows a significant sensitivity towards climate variability for most of the contourite drift locations in the model domain. We observe a general decrease of sedimentation rates during warm conditions with decreasing atmospheric and oceanic gradients and an extensive increase of sedimentation rates during cold conditions with respective increased gradients. We can relate these results to changes in the dominant bottom circulation supplying deep water masses to the contourite sites under different climate conditions. A better understanding of northern deep water pathways in the Atlantic Meridional Overturning Circulation (AMOC) is crucial for evaluating possible consequences of climate change in the ocean.</p>


2021 ◽  
Vol 36 (2) ◽  
Author(s):  
Lina Zhai ◽  
Shiming Wan ◽  
Christophe Colin ◽  
Debo Zhao ◽  
Yuntao Ye ◽  
...  

2000 ◽  
Vol 79 (2-3) ◽  
pp. 335-343 ◽  
Author(s):  
Marit-Solveig Seidenkrantz ◽  
Karen Luise Knudsen ◽  
Peter Kristensen

AbstractThe marine Eemian (marine oxygen-isotope substage 5e: MIS 5e) is represented by shallow-water deposits in southern and western Denmark, while relatively deep-water environments occurred to the north and north-east, where complete interglacial successions seem to be present. We present an overview of the marine Eemian deposits in Denmark, and discuss in more detail indications of climate variability, both for the late Saalian and within the Eemian.


2012 ◽  
Vol 81 (3) ◽  
pp. 1133-1137 ◽  
Author(s):  
R. P. Vieira ◽  
B. Christiansen ◽  
S. Christiansen ◽  
J. M. S. Gonçalves

Sign in / Sign up

Export Citation Format

Share Document