Deep‐Water Formation in the North Pacific During the Late Miocene Global Cooling

2021 ◽  
Vol 36 (2) ◽  
Author(s):  
Lina Zhai ◽  
Shiming Wan ◽  
Christophe Colin ◽  
Debo Zhao ◽  
Yuntao Ye ◽  
...  
2011 ◽  
Vol 7 (2) ◽  
pp. 487-499 ◽  
Author(s):  
V. Kamphuis ◽  
S. E. Huisman ◽  
H. A. Dijkstra

Abstract. To understand the three-dimensional ocean circulation patterns that have occurred in past continental geometries, it is crucial to study the role of the present-day continental geometry and surface (wind stress and buoyancy) forcing on the present-day global ocean circulation. This circulation, often referred to as the Conveyor state, is characterised by an Atlantic Meridional Overturning Circulation (MOC) with a deep water formation at northern latitudes and the absence of such a deep water formation in the North Pacific. This MOC asymmetry is often attributed to the difference in surface freshwater flux: the Atlantic as a whole is a basin with net evaporation, while the Pacific receives net precipitation. This issue is revisited in this paper by considering the global ocean circulation on a retrograde rotating earth, computing an equilibrium state of the coupled atmosphere-ocean-land surface-sea ice model CCSM3. The Atlantic-Pacific asymmetry in surface freshwater flux is indeed reversed, but the ocean circulation pattern is not an Inverse Conveyor state (with deep water formation in the North Pacific) as there is relatively weak but intermittently strong deep water formation in the North Atlantic. Using a fully-implicit, global ocean-only model the stability properties of the Atlantic MOC on a retrograde rotating earth are also investigated, showing a similar regime of multiple equilibria as in the present-day case. These results indicate that the present-day asymmetry in surface freshwater flux is not the most important factor setting the Atlantic-Pacific salinity difference and, thereby, the asymmetry in the global MOC.


2014 ◽  
Vol 29 (6) ◽  
pp. 645-667 ◽  
Author(s):  
James W. B. Rae ◽  
Michael Sarnthein ◽  
Gavin L. Foster ◽  
Andy Ridgwell ◽  
Pieter M. Grootes ◽  
...  

2010 ◽  
Vol 6 (6) ◽  
pp. 2455-2482
Author(s):  
V. Kamphuis ◽  
S. E. Huisman ◽  
H. A. Dijkstra

Abstract. To understand the three-dimensional ocean circulation patterns that have occurred in past continental geometries, it is crucial to study the role of the present-day continental geometry and surface (wind stress and buoyancy) forcing on the present-day global ocean circulation. This circulation, often referred to as the Conveyor state, is characterized by an Atlantic Meridional Overturning Circulation (MOC) with deep water formation at northern latitudes and the absence of such deep water formation in the North Pacific. This MOC asymmetry is often attributed to the difference in surface freshwater flux: the North Atlantic is a basin with net evaporation, while the North Pacific receives net precipitation. This issue is revisited in this paper by considering the global ocean circulation on a retrograde rotating earth, computing an equilibrium state of the coupled atmosphere-ocean-land surface-sea ice model CCSM3. The Atlantic-Pacific asymmetry in surface freshwater flux is indeed reversed but the ocean circulation pattern is not an Inverse Conveyor state (with deep water formation in the North Pacific) as there is strong and highly variable deep water formation in the North Atlantic. Using a fully-implicit, global ocean-only model also the stability properties of the Atlantic MOC on a retrograde rotating earth are investigated, showing a similar regime of multiple equilibria as in the present-day case. These results demonstrate that the present-day asymmetry in surface freshwater flux is not a crucial factor for the Atlantic-Pacific asymmetry in the global MOC.


2020 ◽  
Author(s):  
James Rae ◽  
William Gray ◽  
Louisa Bradtmiller ◽  
Andrea Burke ◽  
Holger Gebhardt ◽  
...  

<p>The North Pacific has been thought of as a sleeping giant in Earth’s climate system.  Despite being a major reservoir of heat, nutrients, and carbon, the lack of deep water formation in this region today limits the exchange of these properties.  Here, using a variety of new and published sediment core data, alongside Earth system modeling, we provide evidence that the North Pacific giant is in fact a dynamic player in Earth’s climate system, with active PMOC during the LGM and deep water formation during HS1.  We also demonstrate a persistent Atlantic-Pacific seesaw in deep water formation during rapid climate change events, and discuss the impact of these changes on regional climate and global CO<sub>2</sub>.</p>


1998 ◽  
Vol 18 (3-4) ◽  
pp. 113-128 ◽  
Author(s):  
Zhengtang Guo ◽  
Tungsheng Liu ◽  
Nicolas Fedoroff ◽  
Lanying Wei ◽  
Zhongli Ding ◽  
...  

2020 ◽  
Author(s):  
Helene Hewitt ◽  
Laura Jackson ◽  
Malcolm Roberts ◽  
Dorotea Iovino ◽  
Torben Koenigk ◽  
...  

<p>We examine the weakening of the Atlantic Meridional Overturning Circulation (AMOC) in response to increasing CO<sub>2</sub> at different horizontal resolutions in HadGEM3-GC3.1 and in a small ensemble of models with differing resolutions. There is a strong influence of the ocean mean state on the AMOC weakening: models with a more saline western subpolar gyre have a greater formation of deep water there. This makes the AMOC more susceptible to weakening from an increase in CO<sub>2</sub> since weakening ocean heat transports weaken the contrast between ocean and atmospheric temperatures and hence weaken the buoyancy loss. In models with a greater proportion of deep water formation further north (in the Greenland-Iceland-Norwegian basin), deep-water formation can be maintained by shifting further north to where there is a greater ocean-atmosphere temperature contrast.</p><p>We show that ocean horizontal resolution can have an impact on the mean state, and hence AMOC weakening. In the models examined, those with higher resolutions tend to have a more westerly path of the North Atlantic Current and hence greater impact of the warm, saline subtropical Atlantic waters on the western subpolar gyre. This results in greater dense water formation in the western subpolar gyre. Although there is some improvement of the higher resolution models over the lower resolution models in terms of the mean state, both still have biases and it is not clear which biases are the most important for influencing the AMOC strength and response to increasing CO<sub>2</sub>.</p><p> </p>


2021 ◽  
Author(s):  
Iván Manuel Parras Berrocal ◽  
Ruben Vazquez ◽  
William David CabosNarvaez ◽  
Dimitry Sein ◽  
Oscar Alvarez Esteban ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document