Evaluation of Image Features Within and Surrounding Lesion Region for Risk Stratification in Breast Ultrasound Images

2019 ◽  
pp. 1-12
Author(s):  
Lipismita Panigrahi ◽  
Kesari Verma ◽  
Bikesh Kumar Singh
2020 ◽  
Vol 17 (2) ◽  
Author(s):  
Chih-Yu Liang ◽  
Tai-Been Chen ◽  
Nan-Han Lu ◽  
Yi-Chen Shen ◽  
Kuo-Ying Liu ◽  
...  

Background: Ultrasound imaging has become one of the most widely utilized adjunct tools in breast cancer screening due to its advantages. The computer-aided detection of breast ultrasound is rapid development via significant features extracted from images. Objectives: The main aim was to identify features of breast ultrasound image that can facilitate reasonable classification of ultrasound images between malignant and benign lesions. Patients and Methods: This research was a retrospective study in which 85 cases (35 malignant [positive group] and 50 benign [negative group] with diagnostic reports) with ultrasound images were collected. The B-mode ultrasound images have manually selected regions of interest (ROI) for estimated features of an image. Then, a fractal dimensional (FD) image was generated from the original ROI by using the box-counting method. Both FD and ROI images were extracted features, including mean, standard deviation, skewness, and kurtosis. These extracted features were tested as significant by t-test, receiver operating characteristic (ROC) analysis and Kappa coefficient. Results: The statistical analysis revealed that the mean texture of images performed the best in differentiating benign versus malignant tumors. As determined by the ROC analysis, the appropriate qualitative values for the mean and the LR model were 0.85 and 0.5, respectively. The sensitivity, specificity, accuracy, positive predicted value (PPV), negative predicted value (NPV), and Kappa for the mean was 0.77, 0.84, 0.81, 0.77, 0.84, and 0.61, respectively. Conclusion: The presented method was efficient in classifying malignant and benign tumors using image textures. Future studies on breast ultrasound texture analysis could focus on investigations of edge detection, texture estimation, classification models, and image features.


2020 ◽  
Vol 43 (1) ◽  
pp. 29-45
Author(s):  
Alex Noel Joseph Raj ◽  
Ruban Nersisson ◽  
Vijayalakshmi G. V. Mahesh ◽  
Zhemin Zhuang

Nipple is a vital landmark in the breast lesion diagnosis. Although there are advanced computer-aided detection (CADe) systems for nipple detection in breast mediolateral oblique (MLO) views of mammogram images, few academic works address the coronal views of breast ultrasound (BUS) images. This paper addresses a novel CADe system to locate the Nipple Shadow Area (NSA) in ultrasound images. Here the Hu Moments and Gray-level Co-occurrence Matrix (GLCM) were calculated through an iterative sliding window for the extraction of shape and texture features. These features are then concatenated and fed into an Artificial Neural Network (ANN) to obtain probable NSA’s. Later, contour features, such as shape complexity through fractal dimension, edge distance from the periphery and contour area, were computed and passed into a Support Vector Machine (SVM) to identify the accurate NSA in each case. The coronal plane BUS dataset is built upon our own, which consists of 64 images from 13 patients. The test results show that the proposed CADe system achieves 91.99% accuracy, 97.55% specificity, 82.46% sensitivity and 88% F-score on our dataset.


2019 ◽  
Vol 121 ◽  
pp. 78-96 ◽  
Author(s):  
Mohammad I. Daoud ◽  
Ayman A. Atallah ◽  
Falah Awwad ◽  
Mahasen Al-Najjar ◽  
Rami Alazrai

Data in Brief ◽  
2020 ◽  
Vol 28 ◽  
pp. 104863 ◽  
Author(s):  
Walid Al-Dhabyani ◽  
Mohammed Gomaa ◽  
Hussien Khaled ◽  
Aly Fahmy

Diagnostics ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 176 ◽  
Author(s):  
Tomoyuki Fujioka ◽  
Mio Mori ◽  
Kazunori Kubota ◽  
Yuka Kikuchi ◽  
Leona Katsuta ◽  
...  

Deep convolutional generative adversarial networks (DCGANs) are newly developed tools for generating synthesized images. To determine the clinical utility of synthesized images, we generated breast ultrasound images and assessed their quality and clinical value. After retrospectively collecting 528 images of 144 benign masses and 529 images of 216 malignant masses in the breasts, synthesized images were generated using a DCGAN with 50, 100, 200, 500, and 1000 epochs. The synthesized (n = 20) and original (n = 40) images were evaluated by two radiologists, who scored them for overall quality, definition of anatomic structures, and visualization of the masses on a five-point scale. They also scored the possibility of images being original. Although there was no significant difference between the images synthesized with 1000 and 500 epochs, the latter were evaluated as being of higher quality than all other images. Moreover, 2.5%, 0%, 12.5%, 37.5%, and 22.5% of the images synthesized with 50, 100, 200, 500, and 1000 epochs, respectively, and 14% of the original images were indistinguishable from one another. Interobserver agreement was very good (|r| = 0.708–0.825, p < 0.001). Therefore, DCGAN can generate high-quality and realistic synthesized breast ultrasound images that are indistinguishable from the original images.


Sign in / Sign up

Export Citation Format

Share Document