ANALYSIS OF ORGANIC MATERIAL DIFFICULT TO RECOVER FROM OIL SHALE

1985 ◽  
Vol 3 (4) ◽  
pp. 489-521 ◽  
Author(s):  
John F. McKay ◽  
M. Sterling Blanche
Keyword(s):  
2019 ◽  
Vol 64 (2) ◽  
pp. 230-237
Author(s):  
Renata Rauch ◽  
Rita Foldenyi

It is not only Total Organic Carbon content (TOC) but also the type of Organic Matter (OM) that the sorption of organic pollutants by soils or other natural absorbents is correlated with. Therefore, the characterization of organic components in the adsorbents is very important to elucidate sorption mechanisms.Oil shale samples were collected in Pula, Hungary. The TOC content of the investigated samples was approximately 6.8-40.1 m/m %. The characterization of the organic matter in samples was carried out by using Scanning Electron Microscopy (SEM), elemental analysis, thermal analysis, and GC-MS technics. The results predominantly indicated the presence of a low degree of the branching of aliphatic chain components in the samples. The Humic Substances (HS) content of the samples was only 1-6 m/m %, which could be determined after the treatment of oil shale with hydrogen peroxide.The influence of the amount and type of organic material in oil shale samples was studied on the adsorption of 2,4-dichlorophenol (2,4-DCP) as a model contaminant. For this aim a series of batch equilibration experiments was carried out. The results show that the total organic carbon content of samples is a strong indicator of 2,4-DCP adsorption, while the HS content is an important feature controlling sorption capacity. The study suggests that the special organic matter (kerogen) content of the oil shale plays a major role in its high adsorption capacity and in the nonlinearity of the isotherms. The HS covering the surface could decrease the sorption capacities despite the fact that though the amount of this organic material is quite low.


1999 ◽  
Vol 17 (6) ◽  
pp. 487-492
Author(s):  
Rittia H. Kettunen ◽  
Pertti Keskitalo ◽  
Taina H. Hoilijoki ◽  
Jukka A. Rintala

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Moch Agus Choiron ◽  
Siti Azizah ◽  
Nafisah Arina Hidayati

Arjowilangun Village is a post-TKI village. People choose to become sheep farmers with less capital than being cattle farmers. Based on the previous discussion, waste management is required to ensure the sustainability of environment in Arjowilangun Village. Processing sheep and agricultural waste program is held by Doktor Mengabdi team. Farmers can learn how to make Bokashi from waste. The method used is composting aerobic or anaerobic starters for composting organic material. A decomposer as collection of several good microbes from fungi work to control pathogenic microbes assists the fermentation process. Based on the results of the pre-test and post-test during the training, it can be showed that understanding of the breeders' potential of the environment is increased.


Author(s):  
J. BERRY, ◽  
C. COOK, ◽  
T.F. DOMINGUES, ◽  
J. EHLERINGER, ◽  
L. FLANAGAN, ◽  
...  

1994 ◽  
Author(s):  
John Stehn ◽  
Scott Carter ◽  
Asmund Vego
Keyword(s):  

2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


Sign in / Sign up

Export Citation Format

Share Document