Scrutiny of chain-length and N-terminal effects in α-helix folding: a molecular dynamics study on polyalanine peptides

2016 ◽  
Vol 35 (9) ◽  
pp. 1923-1935 ◽  
Author(s):  
Bhupesh Goyal ◽  
Anil Kumar ◽  
Kinshuk Raj Srivastava ◽  
Susheel Durani
Polymer ◽  
2006 ◽  
Vol 47 (20) ◽  
pp. 7207-7215 ◽  
Author(s):  
Przemyslaw Czech ◽  
Lidia Okrasa ◽  
Francoise Méchin ◽  
Gisele Boiteux ◽  
Jacek Ulanski

2004 ◽  
Vol 18 (15) ◽  
pp. 2123-2139 ◽  
Author(s):  
BIN XUE ◽  
JUN WANG ◽  
WEI WANG

We study the "folding" behaviors of homopolymers with one end fixed. By using canonical ensemble molecular dynamics simulation method, we observe the conformational changes during folding processes. Long chains collapse to the helical nuclei, then regroup to helix from the free-end to form the compact conformations through the middle stages of helix-like coil and helix-like cone, while short chains do not apparently have the above mentioned middle stages. Through simulated annealing, the native conformation of homopolymer chain in our model is found to be helix. We show the relations between specific heat C v (T) and radius of gyration R g (T) as functions of temperature, chain length and the interaction strength, respectively. We find that these two quantities match well and can be combined to interpret the "folding" process of the homopolymer. It is found that the collapse temperature Tθ and the native-like folding temperature T f do not change with the chain length in our model, however the interaction strength affects the values of Tθ and T f .


2019 ◽  
Author(s):  
Amaurys Ibarra ◽  
Gail J. Bartlett ◽  
Zsofia Hegedus ◽  
Som Dutt ◽  
Fruzsina Hobor ◽  
...  

Here we describe a comparative analysis of multiple CAS methods, which highlights effective approaches to improve the accuracy of predicting hot-spot residues. Alongside this, we introduce a new method, BUDE Alanine Scanning, which can be applied to single structures from crystallography, and to structural ensembles from NMR or molecular dynamics data. The comparative analyses facilitate accurate prediction of hot-spots that we validate experimentally with three diverse targets: NOXA-B/MCL-1 (an α helix-mediated PPI), SIMS/SUMO and GKAP/SHANK-PDZ (both β strand-mediated interactions). Finally, the approach is applied to the accurate prediction of hot-residues at a topographically novel Affimer/BCL-xL protein-protein interface.


2019 ◽  
Author(s):  
Adolfo Bastida ◽  
José Zúñiga ◽  
Alberto Requena ◽  
Javier Cerezo

A novel energetic route driving the folding of a polyalanine peptide from an extended conformation to its α-helix native conformation is described, supported by a new method to compute mean potential energy surfaces accurately in terms of the dihedral angles of the peptide chain from extensive Molecular Dynamics simulations. The Energetic Self-Folding (ESF) route arises specifically from the balance between the intrinsic propensity of alanine residues towards the α<sub>R </sub>conformation and two, opposite, effects: the destabilizing interaction with neighbor residues and the stabilizing formation of native hydrogen bonds, with the latter being dominant for large peptide lengths. The ESF mechanism provides simple but robust support to the nucleation-elongation, or zipper models, and offers a quantitative energetic funnel picture of the folding process. The mechanism is validated by the reasonable agreement between the computed folding energies and the experimental values.


2020 ◽  
Vol 22 (48) ◽  
pp. 28055-28073
Author(s):  
Anupamjeet Kaur ◽  
Deepti Goyal ◽  
Bhupesh Goyal

The molecular dynamics simulations highlighted that ADH-31 inhibited Aβ42 aggregation by constraining Aβ peptide into helical conformation and destabilized Aβ42 trimer as well as protofibril structures.


1990 ◽  
Vol 7 (6) ◽  
pp. 1321-1331 ◽  
Author(s):  
Vincenzo Pavone ◽  
Ettore Benedetti ◽  
Benedetto Di Biasio ◽  
Carlo Pedone ◽  
Antonello Santini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document