Carbon fullerene acts as potential lead molecule against prospective molecular targets of biofilm-producing multidrug-resistant Acinetobacter baumanni and Pseudomonas aerugenosa: computational modeling and MD simulation studies

Author(s):  
Sinosh Skariyachan ◽  
Dharshini Gopal ◽  
Sanjana Pratab Kadam ◽  
Aditi G Muddebihalkar ◽  
Akshay Uttarkar ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sensen Zhang ◽  
Baolei Yuan ◽  
Jordy Homing Lam ◽  
Jun Zhou ◽  
Xuan Zhou ◽  
...  

AbstractPannexin1 (PANX1) is a large-pore ATP efflux channel with a broad distribution, which allows the exchange of molecules and ions smaller than 1 kDa between the cytoplasm and extracellular space. In this study, we show that in human macrophages PANX1 expression is upregulated by diverse stimuli that promote pyroptosis, which is reminiscent of the previously reported lipopolysaccharide-induced upregulation of PANX1 during inflammasome activation. To further elucidate the function of PANX1, we propose the full-length human Pannexin1 (hPANX1) model through cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulation studies, establishing hPANX1 as a homo-heptamer and revealing that both the N-termini and C-termini protrude deeply into the channel pore funnel. MD simulations also elucidate key energetic features governing the channel that lay a foundation to understand the channel gating mechanism. Structural analyses, functional characterizations, and computational studies support the current hPANX1-MD model, suggesting the potential role of hPANX1 in pyroptosis during immune responses.


2019 ◽  
Vol 78 ◽  
pp. 398-413 ◽  
Author(s):  
Shahzaib Ahamad ◽  
Asimul Islam ◽  
Faizan Ahmad ◽  
Neeraj Dwivedi ◽  
Md. Imtaiyaz Hassan

2020 ◽  
Vol 44 (41) ◽  
pp. 17912-17923
Author(s):  
Kandhan Palanisamy ◽  
Muthuramalingam Prakash ◽  
Varatharaj Rajapandian

The hydrated clusters of protonated imidazole (ImH+) can induce protein denaturation through various kinds of monovalent interactions such as cation···π (stacking), N–H⋯π (T-shaped) and water-mediated O–H⋯O H-bonds.


2016 ◽  
Vol 29 (5) ◽  
pp. 055003 ◽  
Author(s):  
Priya Maheshwari ◽  
D Dutta ◽  
T Muthulakshmi ◽  
B Chakraborty ◽  
N Raje ◽  
...  

2019 ◽  
pp. 1-13 ◽  
Author(s):  
John Metzcar ◽  
Yafei Wang ◽  
Randy Heiland ◽  
Paul Macklin

Cancer biology involves complex, dynamic interactions between cancer cells and their tissue microenvironments. Single-cell effects are critical drivers of clinical progression. Chemical and mechanical communication between tumor and stromal cells can co-opt normal physiologic processes to promote growth and invasion. Cancer cell heterogeneity increases cancer’s ability to test strategies to adapt to microenvironmental stresses. Hypoxia and treatment can select for cancer stem cells and drive invasion and resistance. Cell-based computational models (also known as discrete models, agent-based models, or individual-based models) simulate individual cells as they interact in virtual tissues, which allows us to explore how single-cell behaviors lead to the dynamics we observe and work to control in cancer systems. In this review, we introduce the broad range of techniques available for cell-based computational modeling. The approaches can range from highly detailed models of just a few cells and their morphologies to millions of simpler cells in three-dimensional tissues. Modeling individual cells allows us to directly translate biologic observations into simulation rules. In many cases, individual cell agents include molecular-scale models. Most models also simulate the transport of oxygen, drugs, and growth factors, which allow us to link cancer development to microenvironmental conditions. We illustrate these methods with examples drawn from cancer hypoxia, angiogenesis, invasion, stem cells, and immunosurveillance. An ecosystem of interoperable cell-based simulation tools is emerging at a time when cloud computing resources make software easier to access and supercomputing resources make large-scale simulation studies possible. As the field develops, we anticipate that high-throughput simulation studies will allow us to rapidly explore the space of biologic possibilities, prescreen new therapeutic strategies, and even re-engineer tumor and stromal cells to bring cancer systems under control.


2014 ◽  
Vol 111 (29) ◽  
pp. 10416-10421 ◽  
Author(s):  
D. Karthigeyan ◽  
S. Siddhanta ◽  
A. H. Kishore ◽  
S. S. R. R. Perumal ◽  
H. Agren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document