scholarly journals Structure of the full-length human Pannexin1 channel and insights into its role in pyroptosis

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sensen Zhang ◽  
Baolei Yuan ◽  
Jordy Homing Lam ◽  
Jun Zhou ◽  
Xuan Zhou ◽  
...  

AbstractPannexin1 (PANX1) is a large-pore ATP efflux channel with a broad distribution, which allows the exchange of molecules and ions smaller than 1 kDa between the cytoplasm and extracellular space. In this study, we show that in human macrophages PANX1 expression is upregulated by diverse stimuli that promote pyroptosis, which is reminiscent of the previously reported lipopolysaccharide-induced upregulation of PANX1 during inflammasome activation. To further elucidate the function of PANX1, we propose the full-length human Pannexin1 (hPANX1) model through cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulation studies, establishing hPANX1 as a homo-heptamer and revealing that both the N-termini and C-termini protrude deeply into the channel pore funnel. MD simulations also elucidate key energetic features governing the channel that lay a foundation to understand the channel gating mechanism. Structural analyses, functional characterizations, and computational studies support the current hPANX1-MD model, suggesting the potential role of hPANX1 in pyroptosis during immune responses.

2020 ◽  
Vol 141 ◽  
pp. 93-104
Author(s):  
Gaigai Huang ◽  
Liqin An ◽  
Mengtian Fan ◽  
Menghao Zhang ◽  
Bin Chen ◽  
...  

2017 ◽  
Vol 399 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Jorge Cuellar ◽  
José María Valpuesta ◽  
Alfred Wittinghofer ◽  
Begoña Sot

AbstractRasal is a modular multi-domain protein of the GTPase-activating protein 1 (GAP1) family; its four known members, GAP1m, Rasal, GAP1IP4BPand Capri, have a Ras GTPase-activating domain (RasGAP). This domain supports the intrinsically slow GTPase activity of Ras by actively participating in the catalytic reaction. In the case of Rasal, GAP1IP4BPand Capri, their remaining domains are responsible for converting the RasGAP domains into dual Ras- and Rap-GAPs, via an incompletely understood mechanism. Although Rap proteins are small GTPase homologues of Ras, their catalytic residues are distinct, which reinforces the importance of determining the structure of full-length GAP1 family proteins. To date, these proteins have not been crystallized, and their size is not adequate for nuclear magnetic resonance (NMR) or for high-resolution cryo-electron microscopy (cryoEM). Here we present the low resolution structure of full-length Rasal, obtained by negative staining electron microscopy, which allows us to propose a model of its domain topology. These results help to understand the role of the different domains in controlling the dual GAP activity of GAP1 family proteins.


2021 ◽  
Author(s):  
Pritam Biswas ◽  
Uttam Pal ◽  
Aniruddha Adhikari ◽  
Susmita Mondal ◽  
Ria Ghosh ◽  
...  

Conformational dynamics of macromolecules including enzymes are essential for their function. The present work reports the role of essential dynamics in alpha-chymotrypsin (CHT) which correlates with its catalytic activity. Detailed optical spectroscopy and classical molecular dynamics (MD) simulation were used to study thermal stability, catalytic activity and dynamical flexibility of the enzyme. The study of the enzyme kinetics reveals an optimum catalytic efficiency at 308K. Polarization gated fluorescence anisotropy with 8-anilino-1-napthelene sulfonate (ANS) have indicated increasing flexibility of the enzyme with an increase in temperature. Examination of the structure of CHT reveal the presence of five loop regions (LRs) around the catalytic S1 pocket. MD simulations have indicated that flexibility increases concurrently with temperature which decreases beyond optimum temperature. Principal component analysis (PCA) of the eigenvectors manifests essential dynamics and gatekeeping role of the five LRs surrounding the catalytic pocket which controls the enzyme activity.


2019 ◽  
Vol 47 (5) ◽  
pp. 1393-1404 ◽  
Author(s):  
Thomas Brand

Abstract The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein–protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.


Author(s):  
Katherine Guérard ◽  
Sébastien Tremblay

In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.


Sign in / Sign up

Export Citation Format

Share Document