Computational study to evaluate the potency of phytochemicals in Boerhavia diffusa and the impact of point mutation on cyclin-dependent kinase 2-associated protein 1

Author(s):  
Satya Narayan Sahu ◽  
Sneha Shriparna Satpathy ◽  
Chandana Mohanty ◽  
Subrat Kumar Pattanayak
2021 ◽  
Vol 29 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Margaretha Gansterer ◽  
Richard F. Hartl

AbstractLogistics providers have to utilize available capacities efficiently in order to cope with increasing competition and desired quality of service. One possibility to reduce idle capacity is to build coalitions with other players on the market. While the willingness to enter such coalitions does exist in the logistics industry, the success of collaborations strongly depends on mutual trust and behavior of participants. Hence, a proper mechanism design, where carriers do not have incentives to deviate from jointly established rules, is needed. We propose to use a combinatorial auction system, for which several properties are already well researched but little is known about the auction’s first phase, where carriers have to decide on the set of requests offered to the auction. Profitable selection strategies, aiming at maximization of total collaboration gains, do exist. However, the impact on individual outcomes, if one or more players deviate from jointly agreed selection rules is yet to be researched. We analyze whether participants in an auction-based transport collaboration face a Prisoners’ Dilemma. While it is possible to construct such a setting, our computational study reveals that carriers do not profit from declining the cooperative strategy. This is an important and insightful finding, since it further strengthens the practical applicability of auction-based trading mechanisms in collaborative transportation.


2008 ◽  
Vol 35 (11) ◽  
pp. 3657-3670 ◽  
Author(s):  
Thomas Kelepouris ◽  
Panayiotis Miliotis ◽  
Katerina Pramatari

Author(s):  
Abhijeet Mohan Vaidya ◽  
Naresh Kumar Maheshwari ◽  
Pallippattu Krishnan Vijayan ◽  
Dilip Saha ◽  
Ratan Kumar Sinha

Computational study of the moderator flow in calandria vessel of a heavy water reactor is carried out for three different inlet nozzle configurations. For the computations, PHOENICS CFD code is used. The flow and temperature distribution for all the configurations are determined. The impact of moderator inlet jets on adjacent calandria tubes is studied. Based on these studies, it is found that the inlet nozzles can be designed in such a way that it can keep the impact velocity on calandria tubes within limit while keeping maximum moderator temperature well below its boiling limit.


2021 ◽  
Author(s):  
Priya kaushal ◽  
Tarun Chaudhary ◽  
Gargi Khanna

Abstract The present work is based on the computational study of MoS2 monolayer and effect of tensile strain on its atomic level structure. The bandgap for MoS2 monolayer, defected MoS2 monolayer and Silicon-doped monolayer are 1.82 eV (direct bandgap), 0.04 (indirect bandgap) and 1.25eV (indirect bandgap), respectively. The impact of tensile strain (0-0.7%) on the bandgap and effective mass of charge carriers of these three MoS2 structure has been investigated. The bandgap decrease of 5.76%, 31.86% and 6.03% has been observed in the three structures for biaxial strain while the impact of uniaxial strain is quite low. The impact of higher temperature on the bandgap under biaxial tensile strain has been also analyzed in this paper. These observations are extremely important for 2D material-based research for electronic applications.


Author(s):  
Jan Breitenbach ◽  
Louis Maximilian Reitter ◽  
Muyuan Liu ◽  
Kuan-Ling Huang ◽  
Dieter Bothe ◽  
...  

Spray systems often operate under extreme ambient conditions like high pressure, which can have a significant influence on important spray phenomena. One of these phenomena is binary drop collisions. Such collisions, depending on the relative velocity and the impact parameter (eccentricity of the collision), can lead to drop bouncing, coalescence or breakup. This experimental and computational study is focused on the description of the phenomenon of drop bouncing, which is caused by a thin gas layer preventing the drops coalescence. To identify the main influencing parameters of this phenomenon, experiments on binary drop collisions are performed in a pressure chamber. This experimental system allows us to investigate the effect of an ambient pressure (namely the density and viscosity of the surrounding gas) on the bouncing/coalescence threshold.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4758


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sushovan Chatterjee ◽  
Subhasish Das ◽  
Neelam Kumar Sarma

Purpose The heat transfer within a heat exchanger is highly influenced by geometry of the components especially those with hollow structures like tubes. This paper aims to intend toward the study of efficient and optimized heat transfer in the bends of superheater tubes, with different curvature ratio at constant Reynolds Number. Design/methodology/approach The effect of changing curvature ratio on enthalpy of the fluid passing through the superheater tubes for multi-pass system has been studied with the aid of computational fluid dynamics (CFD) using ANSYS 14.0. Initially a superheater tube with two pass system has been examined with different curvature ratios of 1.425, 1.56, 1.71, 1.85 and 1.99. An industry specified curvature ratio of 1.71 with two pass is investigated, and a comparative assessment has been carried out. This is intended toward obtaining an optimized radius of curvature of the bend for enhancement of heat transfer. Findings The results obtained from software simulation revealed that the curvature ratio of 1.85 provides maximum heat transfer to the fluid flowing through the tube with two pass. This result has been found to be consistent with higher number of passes as well. The effect of secondary flow in bends of curvature has also been illustrated in the present work. Research limitations/implications The study of heat transfer in thermodynamic systems is a never-ending process and has to be continued for the upliftment of power plant performances. This study has been conducted on steady flow behavior of the fluid which may be upgraded by carrying out the same in transient mode. The impact of different curvature ratios on some important parameters such as heat transfer coefficients will certainly upgrade the value of research. Originality/value This computational study provided comprehensive information on fluid flow behavior and its effect on heat transfer in bends of curvature of superheater tubes inside the boiler. It also provides information on optimized bend of curvature for efficient heat transfer process.


2021 ◽  
Vol 23 (36) ◽  
pp. 20553-20559
Author(s):  
Han Wang ◽  
Xiao Wang ◽  
Da Li

We performed a systematic study on the defects in PbI2 of both 1T and 1H phases by DFT calculations. The stability at the neutral and charged states was calculated. The impact of the defects on the electronic properties was also discussed.


Author(s):  
Timo Berthold ◽  
Jakob Witzig

The generalization of mixed integer program (MIP) techniques to deal with nonlinear, potentially nonconvex, constraints has been a fruitful direction of research for computational mixed integer nonlinear programs (MINLPs) in the last decade. In this paper, we follow that path in order to extend another essential subroutine of modern MIP solvers toward the case of nonlinear optimization: the analysis of infeasible subproblems for learning additional valid constraints. To this end, we derive two different strategies, geared toward two different solution approaches. These are using local dual proofs of infeasibility for LP-based branch-and-bound and the creation of nonlinear dual proofs for NLP-based branch-and-bound, respectively. We discuss implementation details of both approaches and present an extensive computational study, showing that both techniques can significantly enhance performance when solving MINLPs to global optimality. Summary of Contribution: This original article concerns the advancement of exact general-purpose algorithms for solving one of the largest and most prominent problem classes in optimization, mixed integer nonlinear programs (MINLPs). It demonstrates how methods for conflict analysis that learn from infeasible subproblems can be transferred to nonlinear optimization. Further, it develops theory for how nonlinear dual infeasibility proofs can be derived from a nonlinear relaxation. This paper features a thoroughly computational study regarding the impact of conflict analysis techniques on the overall performance of a state-of-the-art MINLP solver when solving MINLPs to global optimality.


Author(s):  
Marija Majda Perisic ◽  
Tomislav Martinec ◽  
Mario Storga ◽  
John S Gero

AbstractThis paper presents the results of computational experiments aimed at studying the effect of experience on design teams’ exploration of problem-solution space. An agent-based model of a design team was developed and its capability to match theoretically-based predictions is tested. Hypotheses that (1) experienced teams need less time to find a solution and that (2) in comparison to the inexperienced teams, experienced teams spend more time exploring the solution-space than the problem-space, were tested. The results provided support for both of the hypotheses, demonstrating the impact of learning and experience on the exploration patterns in problem and solution space, and verifying the system's capability to produce the reliable results.


Sign in / Sign up

Export Citation Format

Share Document