MONITORING THE AFTEREFFECTS OF FOREST FIRES WITH REMOTE SENSING IMAGERY

1994 ◽  
Vol 31 (4) ◽  
pp. 352-367 ◽  
Author(s):  
V. V. Furyayev
Author(s):  
Q. Zhang ◽  
Y. Xiao

Abstract. In the current situation of frequent forest fires, the study of forest burned area mapping is important. However, there is still room for improvement in the accuracy of existing forest burning area mapping methods. Therefore, in this paper, an unsupervised method based on fire index enhancement and GRNN (General Regression Neural Network) is proposed for automated forest burned area mapping from single-date post-fire remote sensing imagery. The proposed method first uses adaptive spatial context information to enhance the generated fire index to improve its ability to indicate the burned areas. Then the uncertainty analysis is performed on the enhanced fire index to extract reliable burned samples and non-burned samples for subsequent classifier training. Finally, the improved GRNN model considering the spatial correlation of pixels is used as a classifier to binarize the enhanced fire index to generate the final burned area map. Based on two commonly used fire indexes, NBR (Normalized Burn Ratio) and BAI (Burned Area Index), this paper conducts burned area mapping experiments on a post-fire image of a forest area in Inner Mongolia, China to test the effectiveness of the proposed method, and two commonly used threshold methods (Otsu and Kmeans clustering) are also used to conduct burned area mapping based on threshold segmentation of fire index for comparison experiments. The experimental results prove the effectiveness and superiority of the proposed method. The proposed method is unsupervised and automated, so it has high application value and potential under the current situation of frequent forest fires.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 135-144 ◽  
Author(s):  
C. Deguchi ◽  
S. Sugio

This study aims to evaluate the applicability of satellite imagery in estimating the percentage of impervious area in urbanized areas. Two methods of estimation are proposed and applied to a small urbanized watershed in Japan. The area is considered under two different cases of subdivision; i.e., 14 zones and 17 zones. The satellite imageries of LANDSAT-MSS (Multi-Spectral Scanner) in 1984, MOS-MESSR(Multi-spectral Electronic Self-Scanning Radiometer) in 1988 and SPOT-HRV(High Resolution Visible) in 1988 are classified. The percentage of imperviousness in 17 zones is estimated by using these classification results. These values are compared with the ones obtained from the aerial photographs. The percent imperviousness derived from the imagery agrees well with those derived from aerial photographs. The estimation errors evaluated are less than 10%, the same as those obtained from aerial photographs.


2017 ◽  
Author(s):  
Heather L. Petcovic ◽  
◽  
Laura Tinigin ◽  
Allen Pope ◽  
Natalie Bursztyn ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 54-69
Author(s):  
Yanqin Tian ◽  
Chenghai Yang ◽  
Wenjiang Huang ◽  
Jia Tang ◽  
Xingrong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document