Shear zones, gold mineralization and structural history in the Leonora district, Eastern Goldfields Province, Western Australia

1989 ◽  
Vol 36 (3) ◽  
pp. 383-403 ◽  
Author(s):  
P. R. Williams ◽  
B. W. Nisbet ◽  
M. A. Etheridge
1992 ◽  
Vol 29 (8) ◽  
pp. 1609-1622 ◽  
Author(s):  
W. K. Witt

Minor intrusions in the Menzies – Kambalda greenstone belt of the Archean Eastern Goldfields Province, Western Australia, range from quartz–feldspar porphyry to plagioclase–hornblende porphyry. The porphyries display enrichment of mobile and incompatible elements (K to Zr) and depletion of relatively compatible elements, with negative Nb, P, and Ti anomalies, on mid-ocean-ridge basalt-normalized spidergrams. The composition and timing of emplacement of the porphyries are consistent with a genetic relationship with spatially related granitoids. Porphyries occur in 30% of gold mines in the Menzies–Kambalda belt. The association appears to be largely structural, since both the intrusions and the mineralizing fluids exploit zones of weaknesses, such as lithological contacts and shear zones. Porphyries have been modified to varying degrees by hydrothermal alteration, especially pervasive albitization. Textural evidence indicates that secondary albite and associated sodic amphibole formed late in the deformation history of the greenstones and were broadly contemporaneous with secondary phyllosilicate, carbonate and sulphide minerals related to gold mineralization. Recent studies in the Alleghany district of California suggest the initial rock composition may critically influence the nature of alteration associated with gold mineralization. Therefore, albitization of porphyries may be caused by the same hydrothermal fluids that deposit gold and produce potassic alteration in mafic rocks.


2020 ◽  
pp. 275-288
Author(s):  
Stephen J. Turner ◽  
Graeme Reynolds ◽  
Steffen G. Hagemann

Abstract Boddington is a giant, enigmatic, and atypical Archean Au-Cu deposit hosted in a small, remnant greenstone belt within granite-gneiss and migmatite of the Southwest terrane of the Yilgarn craton, Western Australia. Primary Au and Cu (and Mo) mineralization consists of a network of thin fractures and veins, controlled by shear zones, and dominantly hosted by early dioritic intrusions and their immediate wall rocks, which comprise felsic to intermediate-composition volcanic and volcaniclastic rocks. The pre-~2714 Ma host rocks are typically steeply dipping and strongly deformed, with early ductile and overprinting brittle-ductile fabrics, and have been metamorphosed at mid- to upper greenschist facies. Features consistent with porphyry-style mineralization, classic orogenic shear zones, and intrusion-related Au-Cu-Bi mineralization are all recognized, giving rise to a variety of genetic interpretations. It is clear that Boddington does not fit any classic Archean orogenic gold deposit model, having a general lack of quartz veins and iron carbonate alteration, a Cu (Mo and Bi) association, zoned geochemical anomalism, and evidence of high-temperature, saline ore-forming fluids. Detailed petrographic, geochemical, and melt inclusion studies suggest a late-stage ~2612 Ma, monzogranite intrusion as one of the principal sources of the mineralizing fluids. However, there is also local evidence for older, perhaps protore, porphyry-style Cu (±Au) in the dioritic intrusions and patchy, locally high-grade, orogenic-style gold mineralization associated with enclosing shear zones and brittle-style deformation, which was focused on the relatively competent dioritic intrusions. The relative contributions of metals from these components to the system may not be resolvable. It appears that the Boddington deposit has been a locus for multiple episodes of intrusion, alteration, and mineralization over an extended period of time, as has been demonstrated in a number of other large Canadian and Australian gold deposits, including the Golden Mile near Kalgoorlie.


1977 ◽  
Vol 72 (7) ◽  
pp. 1195-1223 ◽  
Author(s):  
F. M. Barrett ◽  
R. A. Binns ◽  
D. I. Groves ◽  
R. J. Marston ◽  
K. G. McQueen

2004 ◽  
Vol 41 (2) ◽  
pp. 217-235 ◽  
Author(s):  
Bruno Lafrance ◽  
Jerry C DeWolfe ◽  
Greg M Stott

The Beardmore–Geraldton Belt occurs along the southern margin of the Archean Wabigoon subprovince, Superior Province, Ontario. The belt consists of shear-bounded interleaved metasedimentary and metavolcanic units. The units were imbricated from 2696 to 2691 Ma during D1 thrusting and accretion of the Wabigoon, Quetico, and Wawa subprovinces. Post-accretion D2 deformation produced regional F2 folds that transposed lithological units parallel to the axial plane S2 cleavage of the folds. During D3 deformation, the folds were overprinted by a regional S3 cleavage oriented anticlockwise of F2 axial planes, and lithological contacts and S2 cleavage were reactivated as planes of shear within dextral regional shear zones that generally conform to the trend of the belt. D3 is a regional dextral transpression event that also affected the Quetico and Wawa subprovinces, south of the Beardmore–Geraldton Belt. Gold mineralization at the Leitch and MacLeod-Cockshutt mines, the two richest past-producing gold mines in the Beardmore–Geraldton Belt, is associated with D3 shear zones and folds, overprinting regional F2 folds. The plunge of the ore zones is parallel to F3 fold axes and to the intersection of D3 shear zones with F2 and F3 folds.


2021 ◽  
pp. geochem2021-074
Author(s):  
Godson Godfray

Successful gold exploration projects depend on a piece of clear information on the association between gold, trace elements, and mineralization controlling factors. The use of soil geochemistry has been an important tool in pinpointing exploration targets during the early stage of exploration. This study aimed to establish the gold distribution, the elemental association between gold and its pathfinder elements such as Cu, Zn, Ag, Ni, Co, Mn, Fe, Cd, V, Cr, Ti, Sc, In, and Se and identify lithologies contributing to the overlying residual soils. From cluster analysis, a high similarity level of 53.93% has been shown with Ag, Cd, and Se at a distance level of 0.92. Au and Se have a similarity level of 65.87% and a distance level of 0.68, hence is proposed to be the most promising pathfinder element. PCA, FA, and the Pearson's correlation matrix of transformed data of V, Cu, Ni, Fe, Mn, Cr, and Co and a stronger correlation between Pb and U, Th, Na, K, Sn, Y, Ta and Be shows that source gold mineralization might be associated with both hornblende gneisses interlayered with quartzite, tonalite, and tonalitic orthogneiss. From the contour map and gridded map of Au and its pathfinder elements, it has been noted that their anomalies and target generated are localized in the Northern part of the area. The targets trend ESE to WNW nearly parallel to the shear zones as a controlling factor of Au mineralization emplacement.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5721965


2008 ◽  
Vol 72 (4) ◽  
pp. 953-970 ◽  
Author(s):  
T. Oberthür ◽  
T. W. Weiser

AbstractGold mineralization at the Viceroy Mine is hosted in extensional veins in steep shear zones that transect metabasalts of the Archaean Arcturus Formation. The gold mineralization is generally made up of banded or massive quartz carrying abundant coarse arsenopyrite. However, most striking is a distinct suite of Au-Bi-Te-S minerals, namely joseite-A (Bi4TeS2), joseite-B (Bi4Te2S), hedleyite (Bi7Te3), ikunolite (Bi4S3), ‘protojoseite’ (Bi3TeS), an unnamed mineral (Bi6Te2S), bismuthinite (Bi2S3), native Bi, native gold, maldonite (Au2Bi), and jonassonite (AuBi5S4). The majority of the Bi-Te-S phases is characterized by Bi/(Se+Te) ratios of >1. Accordingly, this assemblage formed at reduced conditions at relatively low fS2 and fTe2. Fluid-inclusion thermometry indicates depositional temperatures of the main stage of mineralization of up to 342°C, in the normal range of mesothermal, orogenic gold deposits worldwide. However, melting temperatures of Au-Bi-Te phases down to at least 235°C (assemblage (Au2Bi + Bi + Bi7Te3)) imply that the Au-Bi-Te phases have been present as liquids or melt droplets. Furthermore, the close association of native gold, native bismuth and other Bi-Te-S phases suggests that gold was scavenged from the hydrothermal fluids by Bi-Te-S liquids or melts. It is concluded that a liquid/melt-collecting mechanism was probably active at Viceroy Mine, where the distinct Au-Bi-Te-S assemblage either formed late as part of the main, arsenopyrite-dominated mineralization, or it represents a different mineralization event, related to rejuvenation of the shear system. In either case, some of the gold may have been extracted from pre-existing, gold-bearing arsenopyrite by Bi-Te-S melts, thus leading to an upgrade of the gold ores at Viceroy. The Au-Bi-Te-S assemblage represents an epithermal-style mineralization overprinted on an otherwise mesothermal (orogenic) gold mineralization.


2021 ◽  
Author(s):  
Jordan A. McDivitt ◽  
Steffen G. Hagemann ◽  
Anthony I.S. Kemp ◽  
Nicolas Thébaud ◽  
Christopher M. Fisher ◽  
...  

Abstract Different genetic and timing models for gold mineralization in the Kalgoorlie gold camp (Yilgarn craton, Western Australia) suggest either broadly synchronous, late-stage mineralization related to metamorphic fluids at ca. 2640 Ma or a punctuated mineralization history from ca. 2675 to 2640 Ma with the involvement of early magmatic-hydrothermal systems (represented by the Fimiston, Hidden Secret, and Oroya gold-telluride lodes) and late metamorphic fluids (represented by the Mt. Charlotte gold stockwork veins). The results of U-Pb and Sm-Nd geochronological studies of zircon, apatite, and titanite from pre-ore dikes and syn-ore dikes constrain the absolute timing of mineralization and provide new evidence to this timing controversy. Emplacement ages constrained by U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon data are interpreted to be similar for both the pre-ore dikes (n = 10) and syn-ore dikes (n = 7) at ca. 2675 Ma. An inferred emplacement age of ca. 2675 Ma for the syn-ore dikes is supported by a Sm-Nd isochron age from apatite (laser ablation-inductively coupled plasma-mass spectrometry; LA-ICP-MS) of 2678 ± 15 Ma and by a U-Pb titanite age (LA-ICP-MS) of 2679 ± 6 Ma. The results of chemical abrasion-isotope dilution-thermal ionization mass spectrometry U-Pb zircon analysis from the pre- and syn-ore dikes are complicated by multistage Pb loss, reverse discordance, and potential inheritance. However, the data are compatible with the emplacement of Fimiston/Hidden Secret gold mineralization at ca. 2675 Ma and suggest a younger age for Oroya mineralization at ca. 2665 Ma. These results contrast with models for orogenic gold deposits that invoke broadly synchronous, late-stage mineralization related to metamorphic fluids at ca. 2640 Ma. The bulk of the Kalgoorlie gold camp’s estimated 2,300 t Au endowment was emplaced at ca. 2675 Ma as Fimiston/Hidden Secret Au mineralization. This early Au mineralization was deformed and overprinted twice by subordinate Au mineralization at ca. 2665 (Oroya mineralization) and ca. 2640 Ma (Mt. Charlotte mineralization). Gold mineralization in the Kalgoorlie gold camp was protracted in nature from ca. 2675 to 2640 Ma and reflects the interplay of early magmatic (Fimiston, Hidden Secret, Oroya) and late metamorphic (Mt. Charlotte) hydrothermal fluid systems in the formation of hybrid intrusion-related and metamorphic orebodies.


Sign in / Sign up

Export Citation Format

Share Document