Porphyry intrusions and albitites in the Bardoc–Kalgoorlie area, Western Australia, and their role in Archean epigenetic gold mineralization

1992 ◽  
Vol 29 (8) ◽  
pp. 1609-1622 ◽  
Author(s):  
W. K. Witt

Minor intrusions in the Menzies – Kambalda greenstone belt of the Archean Eastern Goldfields Province, Western Australia, range from quartz–feldspar porphyry to plagioclase–hornblende porphyry. The porphyries display enrichment of mobile and incompatible elements (K to Zr) and depletion of relatively compatible elements, with negative Nb, P, and Ti anomalies, on mid-ocean-ridge basalt-normalized spidergrams. The composition and timing of emplacement of the porphyries are consistent with a genetic relationship with spatially related granitoids. Porphyries occur in 30% of gold mines in the Menzies–Kambalda belt. The association appears to be largely structural, since both the intrusions and the mineralizing fluids exploit zones of weaknesses, such as lithological contacts and shear zones. Porphyries have been modified to varying degrees by hydrothermal alteration, especially pervasive albitization. Textural evidence indicates that secondary albite and associated sodic amphibole formed late in the deformation history of the greenstones and were broadly contemporaneous with secondary phyllosilicate, carbonate and sulphide minerals related to gold mineralization. Recent studies in the Alleghany district of California suggest the initial rock composition may critically influence the nature of alteration associated with gold mineralization. Therefore, albitization of porphyries may be caused by the same hydrothermal fluids that deposit gold and produce potassic alteration in mafic rocks.


2004 ◽  
Vol 41 (2) ◽  
pp. 217-235 ◽  
Author(s):  
Bruno Lafrance ◽  
Jerry C DeWolfe ◽  
Greg M Stott

The Beardmore–Geraldton Belt occurs along the southern margin of the Archean Wabigoon subprovince, Superior Province, Ontario. The belt consists of shear-bounded interleaved metasedimentary and metavolcanic units. The units were imbricated from 2696 to 2691 Ma during D1 thrusting and accretion of the Wabigoon, Quetico, and Wawa subprovinces. Post-accretion D2 deformation produced regional F2 folds that transposed lithological units parallel to the axial plane S2 cleavage of the folds. During D3 deformation, the folds were overprinted by a regional S3 cleavage oriented anticlockwise of F2 axial planes, and lithological contacts and S2 cleavage were reactivated as planes of shear within dextral regional shear zones that generally conform to the trend of the belt. D3 is a regional dextral transpression event that also affected the Quetico and Wawa subprovinces, south of the Beardmore–Geraldton Belt. Gold mineralization at the Leitch and MacLeod-Cockshutt mines, the two richest past-producing gold mines in the Beardmore–Geraldton Belt, is associated with D3 shear zones and folds, overprinting regional F2 folds. The plunge of the ore zones is parallel to F3 fold axes and to the intersection of D3 shear zones with F2 and F3 folds.



Lithosphere ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 821-833
Author(s):  
Wen-Jun Hu ◽  
Hong Zhong ◽  
Wei-Guang Zhu ◽  
Zhong-Jie Bai

Abstract The Paleozoic Jinshajiang ophiolitic mélange in southwest China marks an important branch ocean (i.e., the Jinshajiang Ocean) of the Paleo-Tethys. Basic-intermediate rocks are widespread features in the mélange; their formation age is well known, but the petrogenesis has not been well studied, which means that the evolutionary history of the Jinshajiang Ocean is not well constrained. To understand the nature of the mélange and the ocean, we present a set of elemental and isotopic data from two typical crustal sequences in two areas of the Jinshajiang ophiolitic mélange, Zhiyong and Baimaxueshan. The basalts in the ca. 343 Ma Zhiyong crustal sequence show mid-ocean-ridge basalt–like geochemical compositions with Nb/La ratios of 0.98–1.15 and εNd(t) values of +6.5 to +7.7, indicating that the basalts formed in the spreading ridge of the ocean. In contrast, the 283 Ma Baimaxueshan crustal sequence consists of gabbros and basaltic-andesitic lavas, which have an arc affinity with Nb/La ratios of 0.54–0.67 and εNd(t) values of +5.1 to +6.5. The geochemical differences were not caused by crustal assimilation but reflect mantle metasomatism by fluids dehydrated from the subducting slab. Therefore, we propose that the Zhiyong and Baimaxueshan crustal sequences formed in seafloor spreading and subduction settings, which were related to the opening and closure of the ocean, respectively.



Zootaxa ◽  
2008 ◽  
Vol 1866 (1) ◽  
pp. 136 ◽  
Author(s):  
DAPHNE E. LEE ◽  
MURRAY R. GREGORY ◽  
CARSTEN LÜTER ◽  
OLGA N. ZEZINA ◽  
JEFFREY H. ROBINSON ◽  
...  

Brachiopods form a small but significant component of the deep-sea benthos in all oceans. Almost half of the 40 brachiopod species so far described from depths greater than 2000 m are small, short-looped terebratulides assigned to two superfamilies, Terebratuloidea and Cancellothyridoidea. In this study we describe Melvicalathis, a new genus of cancellothyridoid brachiopod (Family Chlidonophoridae; Subfamily Eucalathinae) from ocean ridge localities in the south and southeast Pacific Ocean, and cryptic habitats within lava caves in glassy basalt dredged from the Southeast Indian Ridge, Indian Ocean. These small, punctate, strongly-ribbed, highly spiculate brachiopods occur at depths between 2009 m and 4900 m, and appear to be primary colonisers on the inhospitable volcanic rock substrate. The ecology and life-history of Melvicalathis and related deep-sea brachiopods are discussed. Brachiopods are rarely reported from the much-studied but localised hydrothermal vent faunas of the mid ocean ridge systems. They are, however, widespread members of a poorly known deep-sea benthos of attached, suspension-feeding epibionts that live along the rarely sampled basalt substrates associated with mid-ocean ridge systems. We suggest that these basalt rocks of the mid-ocean ridge system act as deep-sea “superhighways” for certain groups of deep-sea animals, including brachiopods, along which they may migrate and disperse. Although the mid-ocean ridges form the most extensive, continuous, essentially uniform habitat on Earth, their biogeographic significance may not have been fully appreciated.



1991 ◽  
Vol 28 (5) ◽  
pp. 706-720 ◽  
Author(s):  
Mehmet F. Taner ◽  
Pierre Trudel

Recent lithogeochemical studies by accurate analytical techniques (e.g., instrumental and radiochemical neutron-activation analyses) have been used to explore the possibility of using gold distribution in the research for new gold deposits; these show that anomalous gold distribution occurs in some parts of the Val-d'Or Formation in the Val-d'Or mining district of Quebec. Gold lithogeochemistry in the Val-d'Or Formation has shown that it is possible to distinguish: (i) background values (1.4–3.5 ppb Au); (ii) zones of primarily anomalous gold values around the Lamaque–Sigma mines (median: 15 ppb Au); (iii) enrichment halos around gold orebodies (median: 70 ppb Au); and (iv) secondary gold enrichment in shear zones. We conclude that the Val-d'Or Formation is auriferous, i.e., anomalously rich in gold at least in some of its parts and contains the Lamaque – Sigma gold mines, representing 68% of the total gold production in the district. The Val-d'Or Formation is part of a central volcanic complex within an island-arc system. The centre of this complex is located in the main Lamaque plug, and this environment may be compared to high-temperature active geothermal systems that are commonly responsible for the formation of epithermal gold deposits. Gold mineralization at Sigma and Lamaque is considered to be related to a late hydrothermal phase or a retrograde phase of regional metamorphism. For the formation of the gold deposits, two distinct and successive events are postulated: (i) a gold-rich synvolcanic geothermal activity and (ii) a late remobilisation from the host rocks followed by deposition of gold ore within favourable structures.



Geophysics ◽  
1998 ◽  
Vol 63 (1) ◽  
pp. 316-318
Author(s):  
A. J. Calvert

In their paper, Kent et al. (1996) present an excellent case history of the use of dip moveout (DMO) and velocity‐filtering in the common midpoint (CMP) domain for the suppression of out‐of‐plane arrivals scattered from a deep sea‐floor. However, they imply that as a result of a “small offset approximation” the use of DMO in this way is limited to surveys recorded in water depths of at least a few kilometers with conventional streamer offsets. This is incorrect. I argue here that the application of DMO will reduce to water velocity the stacking velocity of arrivals scattered from the upper surface of the seafloor without any restriction on water depth. Furthermore, I argue that this use of DMO is simply an example of the equivalence between 2-D and 3-D DMO for marine surveys where all source‐receiver azimuths are equal, and that no “small offset approximation” is required. I first present a counter‐example to the claim of Kent et al. (1996) that seafloor scattering cannot be suppressed using DMO in shallow water, and then consider in more detail their argument for the application of DMO to out‐of‐plane scattering. In the discussion that follows, I only consider DMO in the context of a constant velocity medium.





Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Kate Wheeling

Researchers used an up-to-date global magnetic anomaly data set to track the history of magnetic field reversals and obtain more accurate estimates of tectonic spreading rates.



2020 ◽  
Author(s):  
Neil Mitchell ◽  
Wen Shi ◽  
Ay Izzeldin ◽  
Ian Stewart

<p>Thick evaporites ("salt") were deposited in the South and North Atlantic, and Gulf of Mexico basins, in some parts deposited onto the flanks of nascent oceanic spreading centres.  Unfortunately, knowledge of the history of evaporite movements is complicated in such places by their inaccessibility and subsequent diapirism.  This is less of a problem in the Red Sea, a young rift basin that is transitioning to an ocean basin and where the evaporites are less affected by diapirism.  In this study, we explore the vertical movements of the evaporite surface imaged with deep seismic profiling.  The evaporites have moved towards the spreading axis of the basin during and after their deposition, which ended at the 5.3 Ma Miocene-Pliocene boundary.  We quantify the evaporite surface deflation needed to balance the volume of evaporites overflowing oceanic crust of 5.3 Ma age, thermal subsidence of the lithosphere and loss of halite through pore water diffusion, allowing for isostatic effects.  The reconstructed evaporite surface lies within the range of estimated global sea level towards the end of the Miocene.  Therefore, the evaporites appear to have filled the basin almost completely at the end of the Miocene.  Effects of shunting by terrigenous sediments and carbonates near the coast and contributions of hydrothermal salt are too small to be resolved by this reconstruction.</p>



1986 ◽  
Vol 77 (3) ◽  
pp. 223-230 ◽  
Author(s):  
F. G. F. Gibb ◽  
R. Kanaris-Sotiriou ◽  
R. Neves

ABSTRACTBasic intrusive rocks recently encountered in wells N and NNE of the Shetland Isles are probably parts of a single large sill complex which extends for over 130 km along the edge of the Faeroe-Shetland Trough. The sills intrude thick Mesozoic sediments which almost certainly overlie continental crust but the complex also appears to underlie, and extend beyond the SE edge of, the Faeroes basaltic lava plateau. Petrographic and geochemical analyses of drill core samples recovered from some of these sills reveal that they are of mid-ocean ridge basalt (MORB) type; an observation which provides evidence regarding the plate tectonic history of this area of the North Atlantic and has major implications for the nature of the continental/oceanic crust transition.



2020 ◽  
Author(s):  
Donald J. DePaolo ◽  
Daniel Stolper


Sign in / Sign up

Export Citation Format

Share Document