pathfinder elements
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
pp. geochem2021-074
Author(s):  
Godson Godfray

Successful gold exploration projects depend on a piece of clear information on the association between gold, trace elements, and mineralization controlling factors. The use of soil geochemistry has been an important tool in pinpointing exploration targets during the early stage of exploration. This study aimed to establish the gold distribution, the elemental association between gold and its pathfinder elements such as Cu, Zn, Ag, Ni, Co, Mn, Fe, Cd, V, Cr, Ti, Sc, In, and Se and identify lithologies contributing to the overlying residual soils. From cluster analysis, a high similarity level of 53.93% has been shown with Ag, Cd, and Se at a distance level of 0.92. Au and Se have a similarity level of 65.87% and a distance level of 0.68, hence is proposed to be the most promising pathfinder element. PCA, FA, and the Pearson's correlation matrix of transformed data of V, Cu, Ni, Fe, Mn, Cr, and Co and a stronger correlation between Pb and U, Th, Na, K, Sn, Y, Ta and Be shows that source gold mineralization might be associated with both hornblende gneisses interlayered with quartzite, tonalite, and tonalitic orthogneiss. From the contour map and gridded map of Au and its pathfinder elements, it has been noted that their anomalies and target generated are localized in the Northern part of the area. The targets trend ESE to WNW nearly parallel to the shear zones as a controlling factor of Au mineralization emplacement.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5721965


2021 ◽  
Vol 59 (5) ◽  
pp. 985-1019
Author(s):  
Nicholas Joyce ◽  
Daniel Layton-Matthews ◽  
Kurt Kyser ◽  
Matthew Leybourne ◽  
Kevin Ansdell ◽  
...  

ABSTRACT Pathfinder elements associated with the exploration footprint of the McArthur River unconformity-related U deposit include U, radiogenic Pb, V, Ni, Co, Cu, Mo, As, Zn, and rare earth elements. In this study, the mineralogical and paragenetic context for their occurrence was established by integrating in situ mineral chemistry and laser ablation mass spectrometry chemical mapping of interstitial assemblages, detrital grains, and cements with whole-rock analyses of drill core samples from the diagenetically altered background and the hydrothermally altered sandstone host rocks. Diagenetically altered background sandstones contain a matrix assemblage of illite and dickite, with trace to minor aluminum-phosphate-sulfate (APS) minerals, apatite, and Fe-Ti oxide minerals. Aluminum-phosphate-sulfate minerals account for the majority of the Sr and light rare earth element concentrations, whereas early diagenetic apatite, monazite, and apatite inclusions in detrital quartz and detrital zircon contribute significant U and heavy rare earth elements to samples analyzed with an aggressive leach (partial digestion) such as aqua regia. Hydrothermally altered sandstone host rocks also contain variable assemblages of Al-Mg chlorite (sudoite), alkali-deficient tourmaline, APS minerals, kaolinite, illite, Fe-oxide, and sulfide minerals. Late pre-mineralization chlorite accounts for a significant portion of the observed Ni concentrations, whereas Co, Cu, Mo, and Zn occur predominantly in cryptic sub-micron sulfide and sulfarsenide inclusions within clay mineral aggregates and in association with Fe-Ti oxides. Elevated concentrations of U were observed in cryptic micro-inclusions associated with sulfides in quartz overgrowths, with Fe-Ti oxide micro-inclusions in kaolinite, and in post-mineralization Fe-oxide veins. The distribution of pathfinder elements throughout the deposit footprint appears to be less related to the primary dispersion of alteration minerals from the hydrothermal system than to the secondary dispersion of elements post-mineralization. Their occurrence throughout pre-, syn-, and post-mineralization assemblages further demonstrates the limitations to defining geochemical footprints from pathfinder element concentrations expressed in lithogeochemical data sets without structural, lithological, and mineralogical context.


Author(s):  
Steve R. Beyer ◽  
Paul Stewart ◽  
Lawrence Lahusen ◽  
Kurt Kyser ◽  
Lawrence Bzdel

ABSTRACT Kurt Kyser contributed significantly to understanding the role that fluids play in the formation of unconformity-related U deposits in Canada and Australia and also in the exploration for these deposits. Kurt's exploration research was collaborative with industry, and arguably the most productive of the many industry-collaborative relationships Kurt developed was with Uravan Minerals, a junior exploration company. Ten years of collaborative U-deposit and exploration geochemical research with Uravan, including development of innovative multi-media surface sampling and analytical methods, culminated with the Stewardson Lake uranium exploration project in the Proterozoic Athabasca Basin, Canada. Soil clay separates, pine and spruce tree cores and vegetation, and glacially transported sandstone boulders collected at Stewardson Lake record 207Pb/206Pb ratios as low as 0.18, indicative of radioactive decay of U in a Proterozoic-aged U deposit, and elevated pathfinder elements such as Ni and Co in two areas of the Stewardson Lake property named Areas A and B. Four diamond drill holes in Areas A and B tested targets consisting of anomalous surface-media geochemistry coincident with conductive host rocks determined using geophysical methods. The favorable targeting characteristics were not explained by two of the drill holes in Area A, where only narrow intervals of elevated U, radiogenic Pb, and pathfinder elements or structural disruption that can accompany Athabasca U deposits were intersected. Two drill holes in Area B intersected a broad zone of characteristic chlorite + hematite + illite alteration and U concentrations >1 ppm (aqua regia) in the basal host sandstone. One drill hole in Area B intersected a ∼30-meter-thick hydrothermal alteration zone consisting of silicification, chlorite + kaolinite clay alteration, smoky quartz, Ni-Fe sulfides, and disseminated uraninite accompanied by elevated gamma count rates. Fractures in the host sandstone in Area B record the highest pathfinder concentrations and the most radiogenic Pb isotope ratios and were likely a conduit for secondary dispersion of alteration-related components to the surface. The results validate the Uravan/QFIR exploration model developed over a decade of collaborative applied research and confirm that the Stewardson Lake area is highly prospective to host unconformity-related U mineralization. Lastly, clay alteration mineralogy in the Stewardson Lake area is contrasted with that in the eastern Athabasca Basin, and the value of the industry–academic relationship that benefited both Uravan Minerals and Kurt's Queen's Facility for Isotope Research laboratory is discussed.


2020 ◽  
Vol 217 ◽  
pp. 106593
Author(s):  
Michael F. Gazley ◽  
Adam P. Martin ◽  
Rose E. Turnbull ◽  
Grace Frontin-Rollet ◽  
Delia T. Strong

2020 ◽  
Vol 115 (4) ◽  
pp. 871-901 ◽  
Author(s):  
Kevin Byrne ◽  
Guillaume Lesage ◽  
Sarah A. Gleeson ◽  
Stephen J. Piercey ◽  
Philip Lypaczewski ◽  
...  

Abstract The Highland Valley Copper porphyry deposits, hosted in the Late Triassic Guichon Creek batholith in the Canadian Cordillera, are unusual in that some of them formed at depths of at least 4 to 5 km in cogenetic host rocks. Enrichments in ore and pathfinder elements are generally limited to a few hundred meters beyond the pit areas, and the peripheral alteration is restricted to narrow (1–3 cm) halos around a low density of prehnite and/or epidote veinlets. It is, therefore, challenging to recognize the alteration footprint peripheral to the porphyry Cu systems. Here, we document a workflow to maximize the use of lithogeochemical data in measuring changes in mineralogy and material transfer related to porphyry formation by linking whole-rock analyses to observed alteration mineralogy at the hand specimen and deposit scale. Alteration facies and domains were determined from mapping, feldspar staining, and shortwave infrared imaging and include (1) K-feldspar halos (potassic alteration), (2) epidote veins with K-feldspar–destructive albite halos (sodic-calcic alteration), (3) quartz and coarse-grained muscovite veins and halos and fine-grained white-mica–chlorite veins and halos (white-mica–chlorite alteration), and two subfacies of propylitic alteration comprising (4) prehnite veinlets with white-mica–chlorite-prehnite halos, and (5) veins of epidote ± prehnite with halos of chlorite and patchy K-feldspar. Well-developed, feldspar-destructive, white-mica alteration is indicated by (2[Ca-C] + N + K)/Al values <0.85, depletion in CaO and Na2O, enrichment in K2O, and localized SiO2 addition and is spatially limited to within ~200 m of porphyry Cu mineralization. Localized K2O, Fe2O3, and depletion in Cu, and some enrichment in Na2O and CaO, occurs in sodic-calcic domains that form a large (~34 km2) nonconcentric footprint outboard of well-mineralized and proximal zones enriched in K. Water and magmatic CO2-rich propylitic and sodic-calcic–altered rocks form the largest lithogeochemical footprint to the mineralization in the Highland Valley Copper district (~60 km2). Calcite in the footprint is interpreted to have formed via phase separation of CO2 from a late-stage magmatic volatile phase. Several observations from this study are transferable to other porphyry systems and have implications for porphyry Cu exploration. Feldspar staining and shortwave infrared imaging highlight weak and cryptic alteration that did not cause sufficient material transfer to be confidently distinguished from protolith lithogeochemical compositions. Prehnite can be a key mineral phase in propylitic alteration related to porphyry genesis, and its presence can be predicted based on host-rock composition. Sodic-calcic alteration depletes the protolith in Fe (and magnetite) and, therefore, will impact petrophysical and geophysical characteristics of the system. Whole-rock loss on ignition and C and S analyses can be used to map enrichment in water and CO2 in altered rocks, and together these form a large porphyry footprint that extends beyond domains of enrichment in ore and pathfinder elements and of pronounced alkali metasomatism.


Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 34 ◽  
Author(s):  
Vera Korshunova ◽  
Marina Charykova

The success of prospecting for gold deposit in overburdened areas based on the using of secondary dispersion haloes mostly depends on the chosen method of geochemical survey (sampling horizon, sample preparation for analysis, etc.). At the same time, the geochemistry of gold in the supergene zone is insufficiently studied, especially it’s migration and concentration in association with other elements in surface sediments due to weathering of gold-bearing ore. The main aim of the study presented in this paper is the determination of mobile forms of gold and pathfinder elements (As, Cu, Ni, Ag, Zn, Pb, Se, Sb, Mo, Bi, and Te) in podzol soil and moraine in the areas of Karelia region with known gold mineralization. As a result of conducted experiments it was determined that the main mobile forms of gold are water-soluble and bound to organic matter, while pathfinder elements bound preferably to Fe and Mn(hydr)oxides and to organic matter. As gold and some pathfinders bind with organic matter, this form was considered in more detail, and the elements’ interaction with humic and fulvic acids was investigated. In addition, it was determined that the studied elements are quite “mobile” because the percentage of the mobile form in their total content was mostly more than 50%. The main features of the elements’ migration and concentration were identified in surface sediments of the study areas.


2019 ◽  
Vol 104 ◽  
pp. 294-355 ◽  
Author(s):  
R.R. Anand ◽  
R.M. Hough ◽  
W. Salama ◽  
M.F. Aspandiar ◽  
C.R.M. Butt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document