Joint position reproduction and joint position discrimination at the ankle are not related

2020 ◽  
Vol 37 (2) ◽  
pp. 97-105 ◽  
Author(s):  
Nan Yang ◽  
Gordon Waddington ◽  
Roger Adams ◽  
Jia Han
PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244594
Author(s):  
Piotr Litwin ◽  
Beata Zybura ◽  
Paweł Motyka

Sense of body ownership is an immediate and distinct experience of one’s body as belonging to oneself. While it is well-recognized that ownership feelings emerge from the integration of visual and somatosensory signals, the principles upon which they are integrated are still intensely debated. Here, we used the rubber hand illusion (RHI) to examine how the interplay of visual, tactile, and proprioceptive signals is governed depending on their spatiotemporal properties. For this purpose, the RHI was elicited in different conditions varying with respect to the extent of visuo-proprioceptive divergence (i.e., the distance between the real and fake hands) and differing in terms of the availability and spatiotemporal complexity of tactile stimulation (none, simple, or complex). We expected that the attenuating effect of distance on illusion strength will be more pronounced in the absence of touch (when proprioception gains relatively higher importance) and absent in the presence of complex tactile signals. Additionally, we hypothesized that participants with greater proprioceptive acuity—assessed using an elbow joint position discrimination task—will be less susceptible to the illusion, but only under the conditions of limited tactile stimulation. In line with our prediction, RHI was attenuated at the farthest distance only when tactile information was absent or simplified, but the attenuation was effectively prevented by the use of complex tactile stimulation—in this case, RHI was comparably vivid at both distances. However, passive proprioceptive acuity was not related to RHI strength in either of the conditions. The results indicate that complex-structured tactile signals can override the influence of proprioceptive signals in body attribution processes. These findings extend our understanding of body ownership by showing that it is primarily determined by informative cues from the most relevant sensory domains, rather than mere accumulation of multisensory evidence.


2018 ◽  
Vol 1 (84) ◽  
Author(s):  
Vilma Jurevičienė ◽  
Albertas Skurvydas ◽  
Juozas Belickas ◽  
Giedra Bušmanienė ◽  
Dovilė Kielė ◽  
...  

Research  background  and  hypothesis.  Proprioception  is  important  in  the  prevention  of  injuries  as  reduced proprioception  is  one  of  the  factors  contributing  to  injury  in  the  knee  joint,  particularly  the  ACL.  Therefore, proprioception appears not only important for the prevention of ACL injuries, but also for regaining full function after ACL reconstruction.Research aim. The aim of this study was to understand how proprioception is recovered four and five months after anterior cruciate ligament (ACL) reconstruction.Research methods. The study included 15 male subjects (age – 33.7 ± 2.49 years) who had undergone unilateral ACL reconstruction with a semitendinosus/gracilis (STG) graft in Kaunas Clinical Hospital. For proprioceptive assessment, joint position sense (JPS) was measured on both legs using an isokinetic dynamometer (Biodex), at knee flexion of 60° and 70°, and at different knee angular velocities of 2°/s and 10°/s. The patients were assessed preoperatively and after 4 and 5 months, postoperatively.Research results. Our study has shown that the JPS’s (joint position sense) error scores  to a controlled active movement is significantly higher in injured ACL-deficient knee than in the contralateral knee (normal knee) before surgery and after four and five months of rehabilitation.  After 4 and 5 months of rehabilitation we found significantly lower values in injured knees compared to the preoperative data. Our study has shown that in injured knee active angle reproduction errors after 4 and 5 months of rehabilitation were higher compared with the ones of the uninjured knee. Proprioceptive ability on the both legs was  independent of all differences angles for target and starting position for movement. The knee joint position sense on both legs depends upon the rate of two different angular velocities and the mean active angle reproduction errors at the test of angular velocity slow speed was the highest compared with the fast angular velocity. Discussion and conclusions. In conclusion, our study shows that there was improvement in mean JPS 4 and 5 months after ACL reconstruction, but it did not return to normal indices.Keywords: knee joint, joint position sense, angular velocity, starting position for movement.


Author(s):  
Adel M. Madkhali ◽  
Shibili Nuhmani

Abstract Background Lateral ankle sprain is one of the most common injuries in competitive sports. Previous studies which investigated muscle strength and proprioception (joint position sense) focused on subjects who sustained ankle sprain with instability. It is also important to investigate strength deficits and proprioception in subjects with a history of ankle sprain without instability. Therefore the aim of the study is to investigate proprioception and muscle strength deficits in athletes with lateral ankle sprain. Methods Twenty-four male athletes with a history of lateral ankle sprain and 24 age-matched controls (mean age of 22.42±4.13 years, mean height of 173±5.73 cm, and mean weight of 71.20±7.55 Kg) participated in this cross-sectional study. Peak torque and peak torque ratio at speeds of 30 and 120°/s for concentric and eccentric ankle inversion/eversion were evaluated using an isokinetic dynamometer. The joint position sense of the ankle joint was evaluated using an active angle reproduction test. Result Peak torque produced was significantly less in subjects with history of ankle sprain in concentric inversion 30°/s(t(47)=4.11; p=0.000, Cohen’s d=1.29), concentric inversion 120°/s (t(47)=3.01; p=0.006, Cohen’s d=1.13), concentric eversion 30°/s (t(47)=3.85; p=0.001, Cohen’s d=1.24) and concentric eversion 120°/s (t(47)=3.15; p=0.005, Cohen’s d=1.09). At the same time there was no significant difference observed in eccentric eversion peak torque in both speed (eccentric eversion 30°/s p=0.079; eccentric eversion 120°/s p=0.867) between experimental and control group. No significant difference was found in the joint position sense in the maximal active inversion −5° position (p=0.312) and the 15° inversion position (P=0.386) between both group. Conclusion The study’s results reported a significantly less peak torque of invertors and evertors during concentric movements in athletes with history of ankle sprain. At the same time, no significant difference reported in the evertor/invertor peak torque ratio, and active joint position sense between the 2 groups.


Meccanica ◽  
2021 ◽  
Author(s):  
Dóra Patkó ◽  
Ambrus Zelei

AbstractFor both non-redundant and redundant systems, the inverse kinematics (IK) calculation is a fundamental step in the control algorithm of fully actuated serial manipulators. The tool-center-point (TCP) position is given and the joint coordinates are determined by the IK. Depending on the task, robotic manipulators can be kinematically redundant. That is when the desired task possesses lower dimensions than the degrees-of-freedom of a redundant manipulator. The IK calculation can be implemented numerically in several alternative ways not only in case of the redundant but also in the non-redundant case. We study the stability properties and the feasibility of a tracking error feedback and a direct tracking error elimination approach of the numerical implementation of IK calculation both on velocity and acceleration levels. The feedback approach expresses the joint position increment stepwise based on the local velocity or acceleration of the desired TCP trajectory and linear feedback terms. In the direct error elimination concept, the increment of the joint position is directly given by the approximate error between the desired and the realized TCP position, by assuming constant TCP velocity or acceleration. We investigate the possibility of the implementation of the direct method on acceleration level. The investigated IK methods are unified in a framework that utilizes the idea of the auxiliary input. Our closed form results and numerical case study examples show the stability properties, benefits and disadvantages of the assessed IK implementations.


Author(s):  
Emin Ulas Erdem ◽  
Banu Ünver ◽  
Eda Akbas ◽  
Gizem Irem Kinikli

BACKGROUND: Performing thoracic manipulations for neck pain can result in immediate improvements in neck function. OBJECTIVE: The aim of this study was to investigate the immediate effects of thoracic manipulation on cervical joint position sense and cervical range of motion in individuals with chronic mechanical neck pain. METHODS: Eighty male volunteers between 18–25 years and having chronic or recurrent neck or shoulder pain of at least 3 months duration with or without arm pain were randomized into two groups: Thoracic Manipulation Group (TMG:50) and Control Group (CG:30), with a pretest-posttest experimental design. The TMG was treated with thoracic extension manipulation while the CG received no intervention. Cervical joint position error and cervical range of motion of the individuals were assessed at baseline and 5 minutes later. RESULTS: There was no difference in demographic variables such as age (p= 0.764), Body Mass Index (p= 0.917) and Neck Pain Disability Scale (NPDS) scores (p= 0.436) at baseline outcomes between TMG and CGs. Joint position error outcomes between the two groups following intervention were similar in all directions at 30 and 50 degrees. Differences in range of motion following intervention in neck flexion (p< 0.001) and right rotation (p= 0.004) were higher in TMG compared to CG. CONCLUSIONS: A single session of thoracic manipulation seems to be inefficient on joint position sense in individuals with mild mechanical neck pain. However, thoracic manipulation might be an effective option to increase flexion and rotation of the cervical region as an adjunctive to treatment.


2021 ◽  
pp. 003151252199304
Author(s):  
David Phillips ◽  
Albena Zahariev ◽  
Andrew Karduna

Joint position sense (JPS) is commonly evaluated using an angle replication protocol with vision occluded. However, multiple sources of sensory information are integrated when moving limbs accurately, not just proprioception. The purpose of this study was to examine different availability of vision during an active JPS protocol at the shoulder. Specifically, the effects of four conditions of vision availability were examined for three target shoulder elevation angles (50°, 70° & 90°): vision occluded continuously (P-P); vision available continuously (VP-VP); vision occluded only during target memorization (P-VP); and vision occluded only during target position replication (VP-P). There were 18 participants ( M age = 21, SD = 1 years). We used separate repeated ANOVAs to examine the effect of condition and target angle on participants’ absolute error (AE, a measure of accuracy) and constant error (CE, a measure of directional bias). We found a significant main effect for condition and angle for both dependent variables ( p < 0.01), and follow-up analysis indicated that participants were most accurate in the VP-VP condition and least accurate in the P-VP condition. Further follow-up analysis showed that accuracy improved with higher target elevation angles, consistent with previous research findings. Constant error results were similar, as there was a prominent tendency to overshoot the target. Unsurprisingly, participants performed best at the angle replication protocol with their eyes open. However, while accuracy was reduced when vision was occluded during target memorization, it was restored during target replication. This finding may have indicated an accuracy cost due to introduced noise when transforming sensory information from a proprioceptive reference frame into a visual reference frame.


2021 ◽  
Vol 139 ◽  
pp. 103735
Author(s):  
Mengqian Chen ◽  
Jiang Wu ◽  
Shunda Li ◽  
Jinyue Liu ◽  
Hideo Yokota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document