Maize grain production, plant nutrient concentration and soil chemical properties in response to different residue levels from two previous crops

Author(s):  
Juan Hirzel ◽  
Pablo Undurraga ◽  
Lorenzo León ◽  
Marcelo Panichini ◽  
Jorge Carrasco ◽  
...  
2006 ◽  
Vol 46 (1) ◽  
pp. 93 ◽  
Author(s):  
G. K. McDonald

High spatial and temporal variability is an inherent feature of dryland cereal crops over much of the southern cereal zone. The potential limitations to crop growth and yield of the chemical properties of the subsoils in the region have been long recognised, but there is still an incomplete understanding of the relative importance of different traits and how they interact to affect grain yield. Measurements were taken in a paddock at the Minnipa Agriculture Centre, Upper Eyre Peninsula, South Australia, to describe the effects of properties in the topsoil and subsoil on plant dry matter production, grain yield and plant nutrient concentrations in two consecutive years. Wheat (Triticum aestivum L. cv. Worrakatta) was grown in the first year and barley (Hordeum vulgare L. cv. Barque) in the second. All soil properties except pH showed a high degree of spatial variability. Variability in plant nutrient concentration, plant growth and grain yield was also high, but less than that of most of the soil properties. Variation in grain yield was more closely related to variation in dry matter at maturity and in harvest index than to dry matter production at tillering and anthesis. Soil properties had a stronger relationship with dry matter production and grain yield in 1999, the drier of the two years. Colwell phosphorus concentration in the topsoil (0–0.15 m) was positively correlated with dry matter production at tillering but was not related to dry matter production at anthesis or with grain yield. Subsoil pH, extractable boron concentration and electrical conductivity (EC) were closely related. The importance of EC and soil extractable boron to grain yield variation increased with depth, but EC had a greater influence than the other soil properties. In a year with above-average rainfall, very little of the variation in yield could be described by any of the measured soil variables. The results suggest that variation in EC was more important to describing variation in yield than variation in pH, extractable boron or other chemical properties.


Author(s):  
W. Winnie Kimiti ◽  
M. W. Mucheru-Muna ◽  
J. N. Mugwe ◽  
K. F. Ngetich ◽  
M. N. Kiboi ◽  
...  

In Sub-Saharan Africa (SSA), acidic soil covers 29% of the total area. About 13% of the Kenyan total land area has acidic soils, widely distributed in croplands of the central and western Kenyan regions. The high soil acidity, coupled with soil nutrient depletion, negatively affects crop productivity in the region. We conducted an on-farm experiment to determine the effect of lime, manure, and phosphatic fertilizer application, either solely or combined, on soil chemical properties, maize yield, and profitability in acidic soils of Tharaka Nithi County, Kenya. The treatments were different rates of manure, lime, and P fertilizer. The experiment was designed as a randomized complete block design replicated ten times in farmer’s fields. Soil sampling was done at a depth of 0-20 cm prior to the start of the experiment, after crop harvest of SR2016 and LR2017 seasons. The samples were analyzed in the laboratory following standard methods. Results showed that lime significantly increased soil pH by 10.6% during the SR2016 and by 17.7% during the LR2017. Similarly, treatments with lime reduced exchangeable acidity and increased soil available P. Treatments with inorganic fertilizers had significantly higher maize grain yield in comparison with treatments with the sole application of lime, manure, and lime + manure. Lime + fertilizer + manure treatment gave the highest average maize grain yield (5.1 t ha−1), while control gave the lowest (1.5 t ha−1) during the LR2017 season. Economic returns were low due to the prevailing low rainfall experienced during the study period during the SR2016 season. Lime combined with inorganic fertilizer treatment recorded the highest returns (128.75 USD ha-1) followed by sole inorganic fertilizer (105.94 USD ha-1) during the LR2017 season. The study recommends a combination of both lime and inorganic fertilizer for enhanced maize production and profitability in Tharaka-Nithi County, Kenya.


2022 ◽  
Vol 9 (1) ◽  
pp. 181-191
Author(s):  
Arini Ayu Ardianti ◽  
Faris Nur Fauzi Athallah ◽  
Restu Wulansari ◽  
Kurniawan Sigit Wicaksono

Healthy soil could support plant growth by optimizing the availability of nutrients. The availability of nutrients influences the health of tea plants. Nutrient deficiencies would affect the plant physiology that exhibits the plant withering. This study aimed to define the relationship between soil nutrient availability with plant nutrient uptake. This research was conducted by managing secondary data soil chemical properties, and tea plant nutrients analyzed statistically with Pearson correlation. This study only found a significant correlation between soil pH with P and Mg uptake. Correlation results between soil nutrient and plant nutrient uptake obtained a significantly negative correlation on soil pH with P and Mg nutrients with a correlation value of pH-P (r=-0.52), pH-Mg (r=-0.52). There was no correlation between other soil nutrients and plant nutrient uptake. The results of this study can be used to determine the dose of fertilization and the management recommendation of tea plants.


2020 ◽  
pp. 1-10
Author(s):  
Juan Hirzel ◽  
Pablo Undurraga ◽  
Lorenzo León ◽  
Marcelo Panichini ◽  
Jorge Carrasco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document