scholarly journals Lime, manure and Inorganic Fertilizer Effects on Soil Chemical Properties, Maize Yield and Profitability in Acidic Soils in Central Highlands of Kenya

Author(s):  
W. Winnie Kimiti ◽  
M. W. Mucheru-Muna ◽  
J. N. Mugwe ◽  
K. F. Ngetich ◽  
M. N. Kiboi ◽  
...  

In Sub-Saharan Africa (SSA), acidic soil covers 29% of the total area. About 13% of the Kenyan total land area has acidic soils, widely distributed in croplands of the central and western Kenyan regions. The high soil acidity, coupled with soil nutrient depletion, negatively affects crop productivity in the region. We conducted an on-farm experiment to determine the effect of lime, manure, and phosphatic fertilizer application, either solely or combined, on soil chemical properties, maize yield, and profitability in acidic soils of Tharaka Nithi County, Kenya. The treatments were different rates of manure, lime, and P fertilizer. The experiment was designed as a randomized complete block design replicated ten times in farmer’s fields. Soil sampling was done at a depth of 0-20 cm prior to the start of the experiment, after crop harvest of SR2016 and LR2017 seasons. The samples were analyzed in the laboratory following standard methods. Results showed that lime significantly increased soil pH by 10.6% during the SR2016 and by 17.7% during the LR2017. Similarly, treatments with lime reduced exchangeable acidity and increased soil available P. Treatments with inorganic fertilizers had significantly higher maize grain yield in comparison with treatments with the sole application of lime, manure, and lime + manure. Lime + fertilizer + manure treatment gave the highest average maize grain yield (5.1 t ha−1), while control gave the lowest (1.5 t ha−1) during the LR2017 season. Economic returns were low due to the prevailing low rainfall experienced during the study period during the SR2016 season. Lime combined with inorganic fertilizer treatment recorded the highest returns (128.75 USD ha-1) followed by sole inorganic fertilizer (105.94 USD ha-1) during the LR2017 season. The study recommends a combination of both lime and inorganic fertilizer for enhanced maize production and profitability in Tharaka-Nithi County, Kenya.

2008 ◽  
Vol 56 (3) ◽  
pp. 295-301
Author(s):  
J. Asibuo ◽  
E. Safo ◽  
B. Asafo-Adjei ◽  
P. Osei-Bonsu

Soil management practices that utilize organic matter have great potential to increase productivity in sub-Saharan Africa. Field studies were carried out between September 1995 and August 1998 to determine the effects of three leguminous crop species: velvet bean ( Mucuna pruriens var. utilis ), groundnut ( Arachis hypogaea L.) and cowpea ( Vigna unguiculata (L.) Walp), and inorganic fertilizer on the soil properties and succeeding maize grain yield when grown in rotation on a sandy soil classified as Haplic Lixisol in the forest-savannah transition zone of Ghana. The legumes were established in the minor seasons and maize in all the plots in the major cropping seasons. A 2 × 3 factorial design laid out in a randomized complete block was used. The main plots consisted of three leguminous crop residues and the sub-plots of two fertilizer levels (0 and 45 kg N ha −1 , 19 kg P ha −1 , 19 kg K ha −1 ). The control consisted of maize following maize with the recommended fertilizer rate (90 kg N ha −1 , 37 kg P ha −1 , 37 kg K ha −1 ). On average the Mucuna plots added 4.0 t ha −1 of crop residue to the soil in a season and cowpea 1.0 t ha −1 . The preceding crops had little effect on the soil properties. Leaf area index, total dry matter and maize grain yields were significantly affected by fertilizer. The best maize grain yield (6787 kg ha −1 ) was recorded in the first year on Mucuna plots with half the recommended rate of fertilizer. The cropping sequence with Mucuna residue was the most efficient. The gap in maize grain yield between the fertilized and unfertilized treatments widened each successive year. The interaction between organic matter and fertilizer may have been limited due to the surface application of the organic residue.


2018 ◽  
Vol 10 (9) ◽  
pp. 333 ◽  
Author(s):  
Ana Luiza Privado Martins ◽  
Glécio Machado Siqueira ◽  
Emanoel Gomes de Moura ◽  
Raimunda Alves Silva ◽  
Anágila Janenis Cardoso Silva ◽  
...  

Soil fauna play an important role in ecosystems, and in this context, it is important to better understand how the abiotic and biotic drivers of these organisms interact. We hypothesize that soil fauna are affected by different soil management practices, which has an influence on maize grain yields. The aim of this study was to evaluate the structure of soil fauna under different soil management practices and their associations with maize grain yield. The experiment was conducted in Maranhão, Brazil, in an area divided into 24 plots of 4 × 10 m in a randomized block design with six treatments with four replicates (R). Pitfall traps were placed in the area. The treatments were Leucaena leucocephala-Leucaena (L), nitrogen (N), humic acid + nitrogen (HA + N), nitrogen + Leucaena (N + L), humic acid + Leucaena (HA + L) and humic acid + nitrogen + Leucaena (HA + N + L). The soil fauna dominance, abundance, richness, Shannon-Wiener diversity index, Pielou evenness index and maize grain yield were determined. Formicidae was clearly affected by management with Leucaena, while Coleoptera was affected by management with nitrogen. Despite this, Isopoda and Diplura were the only groups associated with the maize yield. Although fauna abundance did not differ among treatments, it was related to the yield. This study confirms that the abundance and some taxa of soil fauna can influence yield and that these organisms can be used to increase agricultural sustainability.


2012 ◽  
Vol 49 (1) ◽  
pp. 3-18 ◽  
Author(s):  
E. RUTTO ◽  
J. P. VOSSENKEMPER ◽  
J. KELLY ◽  
B. K. CHIM ◽  
W. R. RAUN

SUMMARYCorrect placement of side dress nitrogen (N) fertilizer could increase nitrogen use efficiency (NUE) and maize yield production. Field studies were established to evaluate application of midseason (V8 to V10), variable liquid urea ammonia nitrate (28%), N rates (0, 45, 90 and 134 kg N ha−1) and different application distances (0, 10, 20 and 30 cm) away from the maize row on grain yield and NUE at Haskell and Hennessey in 2009, Efaw in 2010 and Lake Carl Blackwell, Oklahoma in 2009 and 2010. A randomized complete block design with three replications was used throughout the study. Results indicated that maize grain yield in sites with adequate rainfall increased significantly (p < 0.05) with N rate, and poor N response was recorded in sites with low rainfall. Across sites and seasons, varying side dress N application distance away from the maize row did not significantly (p < 0.05) influence maize grain yield and NUE even with no prep-plant applied. Environments with adequate rainfall distribution had better maize grain yields when high side dress N rates (90 and 134 kg N ha−1) were applied 0 to 10 cm, and a higher NUE when 45 kg N ha−1 was applied 0 to 20 cm away from the maize row. For low N rates (45 kg N ha−1), increased maize grain yield and NUE were achieved when side dress N was applied 0 to 20 cm away from the maize row at locations with low rainfall distribution. Across sites and seasons, increasing side dress N to 134 kg N ha−1 contributed to a general decline in mean NUE to as low as 4%, 35%, 10%, 51% at Hennessey, Efaw, LCB (2009) and LCB (2010) respectively.


1999 ◽  
Vol 13 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Udensi E. Udensi ◽  
I. Okezie Akobundu ◽  
Albert O. Ayeni ◽  
David Chikoye

Field experiments were conducted in 1992 to 1993 and in 1995 to 1996 in Ibadan, Nigeria, to assess the effect of velvetbean and herbicides on maize (corn) and cogongrass growth and to assess regrowth of the weed 1 yr after treatment. In 1992 and 1995 cover cropping with velvetbean and imazapyr and glyphosate application reduced cogongrass density as much as the handweeded control. The smothering effect of velvetbean was equivalent to that of glyphosate at 1.8 kg/ha but was less than imazapyr even at the lowest rate of 0.5 kg/ha. Addition of adjuvant did not improve the efficacy of either herbicide. Maize grain yield was higher in velvetbean plots than in fallow plots dominated by cogongrass. Velvetbean and herbicide effects on cogongrass 1 yr later (1993 and 1996) followed a similar trend as observed in the year of application. Annual weed density was highest in glyphosate plots, followed by imazapyr, and least in plots previously seeded to velvetbean. Maize grain yield was higher in herbicide plots (average yield of 3,170 and 1,920 kg/ha in 1993 and 1996, respectively) than in velvetbean plots (2,800 to 1,180 kg/ha in 1993 and 1996, respectively) and handweeded plots (2,890 and 723 kg/ha in 1993 and 1996, respectively). In 1996 the lowest maize yield was in handweeded plots without velvetbean, suggesting that weeding four times suppressed cogongrass density and biomass, but was not sufficient to minimize the subsequent competition from annual weeds. Uncontrolled cogongrass reduced maize yield to zero. These studies suggest that planting velvetbean for cogongrass control may be a better alternative for farmers without the resources to purchase herbicides.


Author(s):  
Arusey Chebet ◽  
Otinga A. Nekesa ◽  
Wilson Ng’etich ◽  
Ruth Njoroge ◽  
Roland W. Scholz ◽  
...  

The objective of this study was to evaluate the effects of site-specific fertilizer recommendations on maize yield using the transdisciplinary (TD) process. 144 farmers participated in the study for the two seasons. Experiments were laid on the farmers’ fields at four sites (Kapyemit, Kipsomba, Ngenyilel and Ziwa, in Uasin Gishu County) using Randomized Complete Block Design in a 3 x 2 factorial arrangement. Treatments included farmers who participated in the TD process (TD2) and those who did not (TD1) in using the interventions for soil fertility improvement which were farmer own practices (ST1); farmers who applied government recommendations (ST2), and site-specific fertilizer recommendations (ST3) which was based on soil testing results. The Data collected was the dry weights of maize which were measured at the end of the seasons and subjected to Analysis of Variance using Genstat 14th edition. Means separation was done using Fischer’s unprotected Least Significant Difference.. There was a significant effect on maize yields by soil testing and participation in TD process p = 0.01. The mean maize grain yield for season one was 5.43 ton ha-1 while for season two was 5.73 ton ha-1. Control farmers (TD1) maize grain yield of 5.27 ton ha-1, had a significant difference (p = 0.05) from the yield of participating farmers (TD2) who had 5.96 ton ha-1. Maize grain yield was increased by the application of site specific fertilizer recommendations which gave an overall mean of 6.57 ton ha-1 for season one and 6.56 ton ha-1 for season two. Following (ST3) recommendations and participation in the TD process, improved soil nutrient content thus maize yield increased. We recommend soil testing and consequent site-specific fertilizer recommendations for any initiative in managing soil fertility.


Water SA ◽  
2019 ◽  
Vol 45 (4 October) ◽  
Author(s):  
ZM Ogbazghi ◽  
EH Tesfamariam ◽  
JG Annandale

When applying municipal sludge according to crop N requirements, the primary aim should be optimizing sludge application rates in order to maximize crop yield and minimize environmental impacts through nitrate leaching. Nitrate leaching and subsequent groundwater contamination is potentially one of the most important factors limiting the long-term viability of sludge application to agricultural soils. This study assessed maize grain yield and potential nitrate leaching from sludge-amended soils, using the SWB-Sci model, based on crop nitrogen requirements and inorganic fertilizer. The following hypotheses were tested using the SWB­-Sci model and 20 years of measured weather data for 4 of the 6 South African agro-ecological zones. Under dryland maize cropping, grain yield and nitrate leaching from sludge-amended soils compared to inorganic fertilizer: (1) will remain the same across agro-ecological zones and sites, (2) will not vary across seasons at a specific site, and (3) will not vary across soil textures. Model simulations showed that annual maize grain yield and nitrate leaching varied significantly (P > 0.05) across the four agro-ecological zones, both for sludge-amended and inorganic fertilizer amended soils. The annual maize grain yield and nitrate leaching from sludge-amended soils were 12.6 t∙ha-1 and 32.7 kgNO3-N∙ha−1 compared to 10.2 t∙ha-1 and 43.2 kgNO3-N∙ha−1 for inorganic fertilizer in the super-humid zone. Similarly, maize grain yield and nitrate leaching varied significantly across seasons and soil textures for both sludge and inorganic fertilizer amended soils. However, nitrate losses were lower from sludge-amended soils (2.3–8.2%) compared to inorganic fertilizer (11.1–26.7%) across all zones in South Africa. Therefore, sludge applied according to crop N requirements has a lower environmental impact from nitrate leaching than commercial inorganic fertilizer. Further validation of these findings is recommended, using field studies, and monitoring potential P accumulation for soils that received sludge according to crop N requirements.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
S. Adjei-Nsiah

The effects of palm bunch ash (PBA) and mineral fertilizer application on grain yield and nutrient uptake in maize and soil chemical properties were studied in both the major and minor rainy seasons in the semi-deciduous forest agro-ecological zone of Ghana. In both the major and minor rainy seasons, the response of maize to four levels (0, 2, 4, and 6 tons per hectare) of palm bunch ash and 200 kg per hectare of NPK (15-15-15) application was evaluated using randomised complete block design. Results of the study showed that application of palm bunch ash significantly (P<0.05) increased soil pH, soil phosphorus, and exchangeable cations. Maize grain yield varied significantly (P<0.05) among the different treatments in both the major and minor rainy seasons. The highest maize grain yield of 4530 and 6120 kg ha-1was obtained at PBA application rate of 2 tonsha-1for the major and minor rainy seasons, respectively.


2007 ◽  
Vol 43 (4) ◽  
pp. 489-503 ◽  
Author(s):  
S. R. WADDINGTON ◽  
MULUGETTA MEKURIA ◽  
S. SIZIBA ◽  
J. KARIGWINDI

To measure the yield and financial returns from five grain legume–maize intercrop combinations over 12 years of cropping, a field experiment was conducted on a loamy sand soil in the subhumid unimodal rainfall environment of Domboshava in north-central Zimbabwe. Inputs and management followed smallholder practice, including partial grazing of crop residues and a zero mineral fertilizer treatment. The intercropped legumes grew moderately well most years. Cowpea averaged the highest grain yield (0.244 t ha−1) and haulm yield (1.54 t ha−1) over the 12 years, followed by pigeonpea and sugar bean. Intercropped pigeonpea yield was the least variable of the legumes over the years. Maize grain yield was highly variable across years with or without fertilizer and was reduced in years of low (533 mm) and high (1313 mm) rainfall. The pigeonpea–maize intercrop grown without fertilizer produced 0.11 t ha−1 (6.25 %) more maize grain yield per year than sole crop maize, in addition to pigeonpea grain and haulms. Intercropped cowpea (which yielded more than double the above-ground non-grain biomass of pigeonpea) had less effect on maize grain yield. There was no trend to greater benefits from the legumes on maize yield after more years of intercropping. Net present values of annual margins accumulated over the 12 years for sole maize with fertilizer (US$1719 ha−1) and without fertilizer (US$935 ha−1) were higher than the fertilized and unfertilized intercropping options (US$1017 and US$745 ha−1). Pigeonpea or cowpea–unfertilized maize generated more financial returns than the other intercrops, but the low yields and high labour costs for the legumes made the intercrops financially unattractive. We conclude that regularly intercropped pigeonpea or cowpea can to a small extent help to maintain maize yield when maize is grown without mineral fertilizer on sandy soils in sub humid zones of Zimbabwe, and simultaneously provide some nutritious food, but that financial considerations will encourage smallholder farmers to persist with growing low input sole crop maize.


Crop Science ◽  
2016 ◽  
Vol 56 (1) ◽  
pp. 344-353 ◽  
Author(s):  
Yoseph Beyene ◽  
Kassa Semagn ◽  
Jose Crossa ◽  
Stephen Mugo ◽  
Gary N. Atlin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document