Solute drag effect on austenite grain growth in hypoeutectoid steel

2020 ◽  
Vol 100 (6) ◽  
pp. 245-259
Author(s):  
Vipin Kumar Devra ◽  
Joydeep Maity
2017 ◽  
Vol 18 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Naoto Fujiyama ◽  
Toshinobu Nishibata ◽  
Akira Seki ◽  
Hiroyuki Hirata ◽  
Kazuhiro Kojima ◽  
...  

2018 ◽  
Vol 941 ◽  
pp. 620-626 ◽  
Author(s):  
Naoto Fujiyama ◽  
Akira Seki

To predict austenite grain growth behavior in the heat-affected zone (HAZ) in low alloy steels, a new calculation model is proposed herein. This model mainly considers the solute-drag effect and pinning effect, which restrain the austenite grain growth. To calculate the solute-drag effect, the grain boundary concentration of each element is obtained by Hillert’s Law. Calculations are performed by simulating the HAZ with a temperature gradient using the phase field method for two dimensions. This calculation demonstrates the possibility of quantitatively predicting the pinning force for welding heat inputs.


2021 ◽  
Vol 118 (4) ◽  
pp. 409
Author(s):  
Xiaoqian Pan ◽  
Jian Yang ◽  
Yinhui Zhang ◽  
Joohyun Park ◽  
Hideki Ono

The submicrometre and nanometre particle characteristics, soluble element contents, and austenite grain growth behaviors in heat-affected zone of offshore engineering steels with 0.0002 (2Mg) and 0.0042 (42Mg) wt.% Mg during the simulated welding process were studied. With increasing the Mg content in steel from 0.0002 to 0.0042 wt.%, the submicron particles are decreased in number and size with their compositions evolved from TiN to TiN + MgO capped with Mo carbides, and the number density of small-sized nanoparticles increases and large-sized nanoparticles decreases. When the temperature is below 1250 °C, the grain growth rate of two steels is not much different due to the larger Mo solute drag effect in 2Mg and larger pinning force in 42Mg. When the temperature is 1250–1300 °C, the small-sized nanoparticles in 42Mg is more than that in 2Mg, resulting in the larger pinning force and smaller grain growth rate in 42Mg. When heated to 1300–1350 °C and soaked at 1350 °C for 300 s, since large quantities of particles smaller than the critical size (dcr) are dissolved, the grain growth rate in 2Mg is smaller than that in 42Mg due to the greater amount of the effective pinning particles and larger pinning force in 2Mg.


2012 ◽  
Vol 715-716 ◽  
pp. 673-678 ◽  
Author(s):  
W. Kranendonk

The relevance of the solute drag phenomenon to the hot rolling of modern steel grades is outlined. An overview of our present knowledge of solute drag in grain growth and recrystallisation in austenite is presented and recommendations for subsequent research are given.


2019 ◽  
Vol 50 (12) ◽  
pp. 5760-5766 ◽  
Author(s):  
Madhumanti Bhattacharyya ◽  
Yves Brechet ◽  
Gary R. Purdy ◽  
Hatem S. Zurob

Sign in / Sign up

Export Citation Format

Share Document