Influence of the Mg content on the austenite grain growth in heat-affected zone of offshore engineering steels considering TiN particle pinning and Mo solute drag effects

2021 ◽  
Vol 118 (4) ◽  
pp. 409
Author(s):  
Xiaoqian Pan ◽  
Jian Yang ◽  
Yinhui Zhang ◽  
Joohyun Park ◽  
Hideki Ono

The submicrometre and nanometre particle characteristics, soluble element contents, and austenite grain growth behaviors in heat-affected zone of offshore engineering steels with 0.0002 (2Mg) and 0.0042 (42Mg) wt.% Mg during the simulated welding process were studied. With increasing the Mg content in steel from 0.0002 to 0.0042 wt.%, the submicron particles are decreased in number and size with their compositions evolved from TiN to TiN + MgO capped with Mo carbides, and the number density of small-sized nanoparticles increases and large-sized nanoparticles decreases. When the temperature is below 1250 °C, the grain growth rate of two steels is not much different due to the larger Mo solute drag effect in 2Mg and larger pinning force in 42Mg. When the temperature is 1250–1300 °C, the small-sized nanoparticles in 42Mg is more than that in 2Mg, resulting in the larger pinning force and smaller grain growth rate in 42Mg. When heated to 1300–1350 °C and soaked at 1350 °C for 300 s, since large quantities of particles smaller than the critical size (dcr) are dissolved, the grain growth rate in 2Mg is smaller than that in 42Mg due to the greater amount of the effective pinning particles and larger pinning force in 2Mg.

2018 ◽  
Vol 941 ◽  
pp. 620-626 ◽  
Author(s):  
Naoto Fujiyama ◽  
Akira Seki

To predict austenite grain growth behavior in the heat-affected zone (HAZ) in low alloy steels, a new calculation model is proposed herein. This model mainly considers the solute-drag effect and pinning effect, which restrain the austenite grain growth. To calculate the solute-drag effect, the grain boundary concentration of each element is obtained by Hillert’s Law. Calculations are performed by simulating the HAZ with a temperature gradient using the phase field method for two dimensions. This calculation demonstrates the possibility of quantitatively predicting the pinning force for welding heat inputs.


2011 ◽  
Vol 189-193 ◽  
pp. 2869-2874 ◽  
Author(s):  
Wen Zhong Song ◽  
Qi Fang ◽  
Hui Ping Ren ◽  
Zi Li Jin ◽  
Hui Chang

The solid solution of the second phase particle and austenite grain growth behavior of the high niobium-containing RE steel was studied by mathematical calculation and extraction replica technique. The purpose of the study was to investigate the effects of Rare Earth La on austenite grain growth and propose an empirical equation for predicting the austenite grain size of RE steel. Austenite grain grows in an exponential law with the increase of heating temperature, while approximately in a parabolic law with the increase of holding time. Results show that the RE steel has good anti-coarsening ability at elevated temperatures. When soaking temperature is lower than 1250°C , AGS and growth rate are small for high niobium steel, but soaking temperature is lower than 1220°C , AGS and growth rate are small for RE steel. RE La can promote solid solution of second-phase particles Nb(C, N), the solution temperature decrease 30°C than high niobium steel.


2012 ◽  
Vol 19 (2) ◽  
pp. 73-78 ◽  
Author(s):  
Lei Zheng ◽  
Ze-xi Yuan ◽  
Shen-hua Song ◽  
Tian-hui Xi ◽  
Qian Wang

2017 ◽  
Vol 18 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Naoto Fujiyama ◽  
Toshinobu Nishibata ◽  
Akira Seki ◽  
Hiroyuki Hirata ◽  
Kazuhiro Kojima ◽  
...  

2012 ◽  
Vol 602-604 ◽  
pp. 318-322
Author(s):  
Xiu Ping Yan ◽  
Zhang Jian ◽  
Xu Ma

According to the typical large-diameter thick-walled steel T/P91 (10Cr9Mo1VNb), during the hot working, there are dynamic recrystallization and grain growth. The influence of the samples at different hot treatment on the grain size and grain growth rate were obtained by the statistics of the grain size, The grain growth index under various heat treatment were compared, the mathematical model of the austenite grain growth law of P91 alloy steel was established.


Author(s):  
Nicolas Romualdi ◽  
Matthias Militzer ◽  
Warren Poole ◽  
Laurie Collins ◽  
Robert Lazor

Abstract Pipelines are the safest and most cost-effective method of oil and gas transportation to storage and processing facilities. Large diameter welded pipes fabricated by submerged arc welding (SAW) are the preferred product in many cases for pipeline construction. Furthermore, pipelines are constructed by welding segments of pipe, typically by single or dual torch Gas Metal Arc Welding (GMAW). During welding, both during pipe fabrication and girth welding, the Heat Affected Zone (HAZ) experiences rapid thermal cycles with peak temperatures up to the melting temperature of the base metal. Controlling the microstructure evolution in the HAZ during welding of line pipe steels is critical to ensure that these products meet the Charpy impact testing and CTOD requirements imposed by clients and specifications. In particular, the Coarse Grain Heat Affected Zone (CGHAZ) is of concern. Here, austenite grain growth occurs readily due to the combination of high temperature and precipitate dissolution. Controlling the CGHAZ austenite grain size is critical to obtain final microstructures with acceptable impact properties. In this study, austenite grain growth has been measured and modeled for thermal conditions relevant for the CGHAZ in 27 steels, including industrial as well as laboratory steels with systematic variations of alloying element content. Austenite grain size was measured using a Laser Ultrasonics for Metallurgy (LUMet) sensor attached to a Gleeble 3500 Thermomechanical Simulator, which enables high-throughput in-situ monitoring of austenite grain growth. A classical grain growth model has been developed based on a standard test. The grain growth kinetics are described by combining curvature driven grain growth with pinning due to TiN precipitates. A phenomenological relationship has been developed for the grain boundary mobility that decreases with C, Nb and Mo alloying which is consistent with their expected grain boundary segregation. The pinning parameter is rationalized in terms of volume fraction and size of TiN particles. The proposed model has been validated for CGHAZ heat treatment cycles including an industrial welding trial. The results of this study provide a model to predict the austenite grain size in the CGHAZ as a function of steel chemistries and heat treatment paths, i.e. welding parameters. Austenite grain size maps have been constructed as a function of peak local temperature and line pipe steel chemistry. The model can be used both for steel chemistry design and for optimizing welding of steels with known chemical composition to minimize the CGHAZ austenite grain size both during pipe fabrication and girth welding.


Sign in / Sign up

Export Citation Format

Share Document