YAG laser welding of aluminium alloys

1995 ◽  
Vol 9 (1) ◽  
pp. 5-12 ◽  
Author(s):  
M Yoshikawa ◽  
T Kurosawa ◽  
K Nakata ◽  
S Kimura ◽  
S Aoki
2021 ◽  
Vol 11 (10) ◽  
pp. 4522
Author(s):  
Tianzhu Sun ◽  
Pasquale Franciosa ◽  
Conghui Liu ◽  
Fabio Pierro ◽  
Darek Ceglarek

Remote laser welding (RLW) has shown a number of benefits of joining 6xxx aluminium alloys such as high processing speed and process flexibility. However, the crack susceptibility of 6xxx aluminium alloys during RLW process is still an open problem. This paper experimentally assesses the impact of transverse micro cracks on joint strength and fatigue durability in remote laser welding of AA6063-T6 fillet lap joints. Distribution and morphology of transverse micro cracks were acquired by scanning electron microscope (SEM) on cross-sections. Grain morphology in the weld zone was determined by electron backscatter diffraction (EBSD) while static tensile and dynamic fatigue tests were carried out to evaluate weld mechanical performance. Results revealed that increasing welding speed from 2 m/min to 6 m/min did not introduce additional transverse micro cracks. Additionally, welding at 2 m/min resulted in tensile strength improvement by 30% compared to 6 m/min due to the expansion of fusion zone, measured by the throat thickness, and refinement of columnar grains near fusion lines. Furthermore, the weld fatigue durability is significantly higher when fracture occurs in weld root instead of fusion zone. This can be achieved by increasing weld root angle with optimum weld fatigue durability at around 55°.


Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

2011 ◽  
Vol 287-290 ◽  
pp. 2401-2406 ◽  
Author(s):  
Ai Qin Duan ◽  
Shui Li Gong

In this paper, the keyhole of YAG laser welding 5A90 Al-Li alloy was observed and measured through the high speed camera. The characteristics of the keyhole and the effects of welding parameters were studied. The characteristics of the absorption of laser energy and the susceptivity for heat input in welding 5A90 were given. The results show that in this welding condition, the keyhole of laser welding 5A90 is nearly a taper and the highest temperature area is in the bottom. There are clear effects of heat input on the characteristics, especially the surface radius of keyhole and plasma/vapor in keyhole. Another phenomena is observed that sometime plasma/vapor could disappear in 0.3ms welding time, and this feature will be more remarkable as decrease of heat input. It shows that the absorption of energy is unsteady. It is known that when this instability reaches a certain value, an unsteady weld will be formed.


2014 ◽  
Vol 41 (9) ◽  
pp. 0903005
Author(s):  
焦娇 Jiao Jiao ◽  
杨立军 Yang Lijun ◽  
刘桐 Liu Tong ◽  
杜笑 Du Xiao ◽  
王会超 Wang Huichao

2003 ◽  
Vol 17 (11) ◽  
pp. 870-878 ◽  
Author(s):  
S Sasabe ◽  
N Eguchi ◽  
M Ema ◽  
T Matsumoto

Sign in / Sign up

Export Citation Format

Share Document