Effect of humic acid in leachate on specific methanogenic activity of anaerobic granular sludge

2015 ◽  
Vol 36 (21) ◽  
pp. 2740-2745 ◽  
Author(s):  
Mengfei Guo ◽  
Ping Xian ◽  
Longhui Yang ◽  
Xi Liu ◽  
Longhui Zhan ◽  
...  
2013 ◽  
Vol 634-638 ◽  
pp. 182-186
Author(s):  
Juan Wang ◽  
Qin Zhong

With the aim to use anaerobic granular sludge, the methanogenic activity inhibition and recovery of anaerobic granular sludge from an industrial anaerobic reactor (s1) were investigated by measuring the methane volume at low pH. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was inoculated with s1.s1 was used to remove Zn2+ in wastewater. The results show that activity of s1 is similar when the pH value is 6.5 to 7.0. The methane volume is obviously decreased when the pH value is 6.0. The activity is completely inhibited when the pH value is 4.5. The activity is fully recovered when the pH is above 6.5 and hardly recovers when the pH fell to 4.5. The main Zn2+ removal mechanism is chemical adsorption.


2009 ◽  
Vol 59 (7) ◽  
pp. 1449-1456 ◽  
Author(s):  
D. Puyol ◽  
A. F. Mohedano ◽  
J. L. Sanz ◽  
J. J. Rodríguez

The influence of several co-substrates in the anaerobic biodegradation of 2,4,6-trichlorophenol (246TCP) by methanogenic granular sludge as well as in methanogenesis inhibition by 246TCP has been studied. 4 g-COD·L−1 of lactate, sucrose, volatile fatty acids (VFA) acetate:propionate:butyrate 1:1:1, ethanol, methanol, yeast extract (YE), and 2 g-COD·L−1 of formate and methylamine were tested. Two concentrations of 246TCP: 80 mg·L−1 and 113 mg·L−1 (this last corresponding to the EC50 for acetotrophic methanogenesis) were tested. Three consecutive co-substrate and nutrient feedings were accomplished. 246TCP was added in the second feed, and the 246TCP removal rate increased considerably after the third feed. Accumulated metabolites after ortho-dechlorination, either 4-chlorophenol (4CP) (when methanol, ethanol or VFA were used as co-substrates) or 2,4-dichlorophenol (24DCP) (with lactate) avoided the complete dechlorination of 246TCP. With methylamine and formate this compound was degraded only partially. Monochlorophenols biodegradation was partially achieved with YE, but both 24DCP and 2,6-dichlorophenol (26DCP) were accumulated. In the presence of sucrose para-dechlorination was observed. 246TCP was better tolerated by methanogens when ethanol and methanol were added because of the highest specific methanogenic activity achieved with these co-substrates. Methanol and ethanol were the best co-substrates in the anaerobic biodegradation of 246TCP.


2016 ◽  
Vol 207 ◽  
pp. 39-45 ◽  
Author(s):  
Aracely S. Cruz-Zavala ◽  
Aurora M. Pat-Espadas ◽  
J. Rene Rangel-Mendez ◽  
Luis F. Chazaro-Ruiz ◽  
Juan A. Ascacio-Valdes ◽  
...  

2010 ◽  
Vol 101 (24) ◽  
pp. 9429-9437 ◽  
Author(s):  
Fernando G. Fermoso ◽  
Jan Bartacek ◽  
Ramon Manzano ◽  
Herman P. van Leeuwen ◽  
Piet N.L. Lens

1994 ◽  
Vol 29 (4) ◽  
pp. 581-598
Author(s):  
C.F. Shew ◽  
N. Kosaric

Abstract Toxicity of sulfite (Na2SO3) and cadmium (CdCl2) ions to anaerobic granular sludge was investigated in 1.2 litre bench-scale upflow anaerobic sludge blanket (UASB) reactors during process acclimation and shock load conditions. Minimal sulfite toxicity was observed under gradual and shock load conditions at sulfite concentrations of up to 1000 mg S/L if proper acclimation was allowed to occur. No long-term toxic effects were observed although the COD digestion rate was temporarily inhibited by shock load of sulfite. Scanning electron micrographs indicated that more sulfate-reducing bacteria were present in the granules developed in the reactors with sulfite supplement although rod-shaped Methanosaeta-like bacteria were still dominant. High bacterial growth rate was observed in the reactors which were supplied with the feed containing sulfite. The COD digestion rate was inhibited at a cadmium loading rate of 2.4 g Cd per day under both acclimation and shock load conditions. Acclimation did not seem to improve the bacteria to tolerate the toxicity of cadmium. The concentration of free cadmium was very low in the reactors under normal conditions, but increased rapidly when the COD digestion in the reactors ceased. The bacteria could not be reactivated after inhibited by cadmium. When reactors were operated at low specific COD loading rates, more inorganic precipitates were formed inside the granules which consequently settled faster.


Sign in / Sign up

Export Citation Format

Share Document