Rapid domestication of autotrophic nitrifying granular sludge and its stability during long-term operation

2019 ◽  
pp. 1-12
Author(s):  
Binchao Zhang ◽  
Bei Long ◽  
Yuanyuan Cheng ◽  
Junfeng Wu ◽  
Linan Zhang ◽  
...  
2017 ◽  
Vol 9 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Jianfeng Li ◽  
Yanjun Liu ◽  
Xiaoning Li ◽  
Fangqin Cheng

Abstract The aerobic granular sludge membrane bioreactor (AGS-MBR) has the potential for simultaneous carbon/nitrogen removal and membrane fouling mitigation. Most studies have focused on comparison of granular sludge MBR and flocculent sludge MBR in short-term tests using synthetic wastewater. In this study, two identical AGS-MBRs were developed, and the reactor performance and membrane fouling were examined systemically over 120 days for synthetic wastewater and municipal sewage treatment, respectively. Results showed that regular granules with good settling ability were developed and maintained throughout the experimental period. Regardless of the substrate type, AGS-MBR demonstrated a stable removal of carbon (85–95%) and nitrogen (50–55%) in long-term operation. In addition, the membrane fouling propensity is apparently lower in AGS-MBRs with no membrane cleaning for 4 months at a flux of 20 L m−2h−1. The filtration resistance analysis indicates that the main membrane resistance was caused by irreversible fouling in both of the reactors. Membrane foulant analysis indicates that proteins in extracellular polymeric substances are more prone to be attached by the membrane of AGS-MBRs because of their hydrophobic nature. This study shows that AGS-MBR is effective and stable for municipal sewage treatment and reuse during long-term operation.


2020 ◽  
Vol 81 (2) ◽  
pp. 309-320 ◽  
Author(s):  
Linan Zhang ◽  
Bei Long ◽  
Yuanyuan Cheng ◽  
Junfeng Wu ◽  
Binchao Zhang ◽  
...  

Abstract Autotrophic nitrifying granular sludge (ANGS) was cultivated by gradually decreasing the influent organics and adding exogenous nitrifying bacteria. Under the strategy, ANGS was domesticated within 36 days. Stability of the seed heterotrophic granules decreased significantly during conversion of organic wastewater to inorganic ammonia wastewater. Obvious granular breakage was observed during these days. However, the granular debris still had good settlement performance. With microbes gradually acclimated to the new environment, the debris provided a large number of carriers for the attached growth of the exogenous nitrifying bacteria, and they replaced the heterotrophic bacteria and became the dominant species. The domesticated ANGS showed good nitrification performance during the 37th to the 183rd day (ammonia nitrogen load between 0.28 and 0.29 kg/m3 · d). The removal rate of ammonia nitrogen was usually more than 95%, and nitrite accumulation rate was always larger than 50%. However, nitrification ability was gradually lost with the increase of the ammonia nitrogen load (0.3–0.64 kg/m3 · d) from the 184th day, and it almost approached the influent ammonia nitrogen at the 269th day. Interestingly, good structure stability of the ANGS was maintained during long-term operation, and the ANGS became smoother and denser at the end of the experiment.


2016 ◽  
Vol 32 (5) ◽  
pp. 1212-1221 ◽  
Author(s):  
A. Fra-Vázquez ◽  
N. Morales ◽  
M. Figueroa ◽  
A. Val del Río ◽  
L. Regueiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document