Low concentration of zeolite to enhance microalgal growth and ammonium removal efficiency in a membrane photobioreactor

2020 ◽  
pp. 1-14
Author(s):  
Ran Tao ◽  
Robert Bair ◽  
Melanie Pickett ◽  
Jorge L. Calabria ◽  
Aino-Maija Lakaniemi ◽  
...  
2021 ◽  
Vol 13 (8) ◽  
pp. 4591
Author(s):  
Shuanglei Huang ◽  
Daishe Wu

The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.


2021 ◽  
Author(s):  
Eleni Gianni ◽  
Christina Vasiliki Lazaratou ◽  
Georgios Panagopoulos ◽  
Panagiota Sarantari ◽  
Fotini Martsouka ◽  
...  

2020 ◽  
Vol 58 (3A) ◽  
pp. 113
Author(s):  
Thuy Nguyen Thi ◽  
Van Tran Dang Lan ◽  
Hoan Nguyen Xuan ◽  
Son Le Thi Bich ◽  
Mai Tran Thi Ngoc ◽  
...  

This study is aimed to evaluate the ability of magnesium oxide-coated carbonized rice hull (MCRH) material for ammonium removal in synthetic and real domestic wastewater. The MCRH material was prepared using waste rice hull from a household rice-processing factory and magnesium chloride salt via a simple mixing and annealing method. The material was then characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The effects of magnesium chloride modification and environmental condition such as initial ammonium concentration (20 – 100 mg/L), amount of adsorbent (0.8 –2.0 g/L), and adsorption time (0 –32 h) on the ammonium removal efficiency and adsorption capacity were investigated. Adsorption kinetic and isotherms were also studied for MCRH material. Results showed that magnesium oxide was successfully coated on carbonized rice hull with Mg/C molar ratio of 0.22. Ammonium adsorption isotherm fitted well to Langmuir model with maximum adsorption capacity of 65.36 mg/g. The adsorption was physical process and adsorption kinetic was best described by intra-particle diffusion model with the correlation coefficients ranged from 0.942 – 0.979. Ammonium removal feasibility of MCRH was proved through the treatment of real domestic wastewater containing 80.7±1.6 mg/L initial ammonia concentration with removal efficiency reached 86.8% and the effluent concentration met the allowable value (10 mg/L) as given by QCVN 14 : 2008/BTNMT (column B) - National technical regulation on domestic wastewater. Hence MCRH is potential as a cheap and abundant material in Vietnam and the material after adsorption accumulated ammonium would be the source of fertilizer for soil quality improvement.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 245-251 ◽  
Author(s):  
P. Castilla ◽  
M. Meraz ◽  
O. Monroy ◽  
A. Noyola

Low concentration synthetic and municipal wastewaters were treated at HRT as short as 3 and 0.6 h respectively in an anaerobic inverse fluidized bed. Both bioreactors showed gas hold up due to the liquid downflow pattern of the prototype. The bioreactor operated at 3 h had a removal efficiency of 83%, specific activity of 4.5 kg CODremoved/kg IVS (d and the gas hold up varied from 23 to 55%. The reactor treating municipal wastewater had a removal efficiency of 44% when operating at 0.6 h, the specific activity was 4.2 kg CODremoved/kg IVS (d and no biogas was detected apparently because an important fraction was dissolved in the liquid phase. The biomass concentration was 13.8 and 1.1 kg IVS/m3 for synthetic and municipal wastewater and the SEM microphotographs showed a bacterial diversity for the first run and only cocci cells for the second run. The system does not remove suspended solids, so a polishing postreatment to improve water quality has to be implemented.


Author(s):  
T Istirokhatun ◽  
S N Aufar ◽  
Munasik ◽  
Sudarno

1996 ◽  
Vol 39 (4) ◽  
pp. 19-27
Author(s):  
W. Whyte ◽  
T. Shields ◽  
T. Prvan

The variables that influence the particle removal efficiency of cleanroom mats were investigated. The removal efficiency was generally found to be greater if the mat was of a softer type, the particles smaller, the particle size distribution more homogeneous, the distance between the particles greater, and the adhesive strength of the mat surface greater. One application of a mat surface was sufficient to remove a low concentration of similarly sized particles from a surface but it could require up to four mat surfaces to remove a high concentration of heterogeneously sized particles. It was found with heterogeneously sized particles that larger particles were removed first, thus allowing access to the smaller particles which could then be removed. If the mat was soft, it allowed larger particles to sink into it and smaller particles than normal to be picked up.


2019 ◽  
Vol 25 (4) ◽  
pp. 554-560 ◽  
Author(s):  
Jin-Su Kim ◽  
Ji-Young Lee ◽  
Seung-Kyu Choi ◽  
Qian Zhu ◽  
Sang-Ill Lee

This study focuses on nitrification through a biological aerated filter (BAF) that is filled with a zeolite medium at low concentrations of ammonia. The zeolite medium consists of natural zeolite powder. The BAF is operated under two types of media, which are a ball-type zeolite medium and expanded poly propylene (EPP) medium. Nitrification occurred in the zeolite BAF (ZBAF) when the influent concentration of ammonia nitrogen was 3 mg L-1, but the BAF that was filled with an EPP medium did not experience nitrification. The ammonia nitrogen removal efficiency of ZBAF was 63.38% and the average nitrate nitrogen concentration was 1.746 mg/L. The ZBAF was tested again after a comparison experiment to treat pond water, and municipal wastewater mixed pond water. The ZBAF showed remarkable ammonia-nitrogen treatment at low concentration and low temperature. During this period, the average ammonia nitrogen removal efficiency was 64.56%. Especially, when water temperature decreased to 4.7℃, ammonia nitrogen removal efficiency remained 79%. On the other hand, the chemical-oxygen demand (COD) and phosphorus-removal trends were different. The COD and phosphorus did not show as efficient treatment as the ammonia-nitrogen treatment.


2013 ◽  
Vol 67 (3) ◽  
pp. 612-618 ◽  
Author(s):  
Chong Tan ◽  
Fang Ma ◽  
Shan Qiu

A sequencing batch biofilm reactor (SBBR) filled with polyurethane (PU) was operated in low dissolved oxygen (DO) (0.1–0.9 mg/L) at three different carbon to nitrogen ratios (C/N ratios) (C/N = 1.8:1, 5.0:1 and 10.5:1) with focus on reactor performance and microbial community composition of nitrifying and denitrifying bacteria. Meanwhile, the ammonium, nitrite, nitrate, pH and dissolved oxygen were analyzed to monitor the process of nitrification-denitrification. The reactor had a steady ammonium removal in spite of a large variation in the initial ammonium loading (the ammonium removal efficiency was 87.2% at C/N 1.8:1, 92.9% at C/N 5.0:1, 88.4% at C/N 10.5:1). However, the total nitrogen (TN) removal was strongly affected by the initial organic loading (the TN removal efficiency was 55.2% at C/N 1.8:1, 74.3% at C/N 5.0:1, 79.0% at C/N 10.5:1). It was indicated that higher organic load promoted denitrification. The real-time quantitative polymerase chain reaction (real-time qPCR) analysis shown that Beta-proteobacteria occupied over 35% numerically. As for the Nitrosomonas sp., Nitrosospira sp. and Nitrospira sp. gene copy numbers, their abundance was generally in the order of magnitude of 1010. The Nitrosospira sp. fluctuated significantly in the range of 3.1–9.8% at different C/N ratios, while the Nitrosomonas sp. just changed a little.


2012 ◽  
Vol 554-556 ◽  
pp. 2031-2036
Author(s):  
Yi Fei Wang

The natural mordenite was treated hydrothermally with NaOH solutions, either with or without fusion with NaOH powder as pretreatment. Zeolite Na-P and analcime were identified as the reacted products, depending on the reaction conditions. The zeolites were identified by X-raydiffraction, and their cation exchange capacity (CEC) was determined. Zeolite Na-P has higher CEC (338 meq/100g) contrasted with the mordenite (181 meq/100g). Further more, the uptakes of NH4+ onto the zeolites have also been investigated. The Na-P has faster exchange rate, higher exchange amounts and better regeneration ability. The ammonium removal efficiency for the Na-P is above 90% at the ammonium initial concentrations less than 150 mg NH4+/g. It seemed that Na-P was fit for the further treatment of waters polluted with ammonium.


Sign in / Sign up

Export Citation Format

Share Document