Electrodegradation of Cyclophosphamide in Artificial Urine by combined methods

2021 ◽  
pp. 1-37
Author(s):  
Marquele Amorim Tonhela ◽  
Maria Emília Veloso Almeida ◽  
Ana Claudia Granato Malpass ◽  
Artur de Jesus Motheo ◽  
Geoffroy Roger Pointer Malpass
2020 ◽  
pp. 339-342
Author(s):  
V.F. Bez’yazychny ◽  
M.V. Timofeev ◽  
R.V. Lyubimov ◽  
E.V. Kiselev

The theoretical justification for the hardening process of the surface layer of machine parts for combined methods of surface hardening with subsequent application of strengthening coatings, as well as reducing or increasing the fatigue limit due to the fretting process is presented.


2015 ◽  
Vol 9 (4) ◽  
pp. 270-276 ◽  
Author(s):  
Luis Marestoni ◽  
Ademar Wong ◽  
Gustavo Feliciano ◽  
Mary Marchi ◽  
Cesar Tarley ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 295 ◽  
Author(s):  
Sébastien Champagne ◽  
Ehsan Mostaed ◽  
Fariba Safizadeh ◽  
Edward Ghali ◽  
Maurizio Vedani ◽  
...  

Absorbable metals have potential for making in-demand rigid temporary stents for the treatment of urinary tract obstruction, where polymers have reached their limits. In this work, in vitro degradation behavior of absorbable zinc alloys in artificial urine was studied using electrochemical methods and advanced surface characterization techniques with a comparison to a magnesium alloy. The results showed that pure zinc and its alloys (Zn–0.5Mg, Zn–1Mg, Zn–0.5Al) exhibited slower corrosion than pure magnesium and an Mg–2Zn–1Mn alloy. The corrosion layer was composed mostly of hydroxide, carbonate, and phosphate, without calcium content for the zinc group. Among all tested metals, the Zn–0.5Al alloy exhibited a uniform corrosion layer with low affinity with the ions in artificial urine.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2551
Author(s):  
Wojciech Kajzer ◽  
Janusz Szewczenko ◽  
Anita Kajzer ◽  
Marcin Basiaga ◽  
Joanna Jaworska ◽  
...  

In this study, we aimed to determine the effect of long-term exposure to artificial urine on the physical properties of CoCrMo alloy with biodegradable heparin-releasing polymeric coatings. Variants of polymer coatings of poly(L,L-lactide-ɛ-caprolactone) (P(L,L-L/CL)) and poly(D,L-lactide-ɛ-caprolactone) (P(D,L-L/CL)) constituting the base for heparin-releasing (HEP) polyvinyl alcohol (PVA) coatings were analyzed. The coatings were applied by the dip-coating method. Heparin was used to counteract the incrustation process in the artificial urine. The study included tests of wettability, resistance to pitting and crevice corrosion, determination of the mass density of metal ions penetrating into the artificial urine, and the kinetics of heparin release. In addition, microscopic observations of surface roughness and adhesion to the metal substrate were performed. Electrolytically polished CoCrMo samples (as a reference level) and samples with polymer coatings were used for the tests. The tests were conducted on samples in the initial state and after 30, 60, and 90 days of exposure to artificial urine. The analysis of the test results shows that the polymer coatings contribute by improving the resistance of the metal substrate to pitting and crevice corrosion in the initial state and reducing (as compared with the metal substrate) the mass density of metal ion release into the artificial urine. Moreover, the PVA + HEP coating, regardless of the base polymer coatings used, contributes to a reduction in the incrustation process in the first 30 days of exposure to the artificial urine.


2010 ◽  
Vol 74 (6) ◽  
pp. 1319-1325 ◽  
Author(s):  
Jason D. Riddle ◽  
Stephen J. Stanislav ◽  
Kenneth H. Pollock ◽  
Christopher E. Moorman ◽  
Fern S. Perkins

1987 ◽  
Vol 16 (1) ◽  
pp. 37-41 ◽  
Author(s):  
A J Cox ◽  
D W L Hukins ◽  
K E Davies ◽  
J C Irlam ◽  
T M Sutton

An automated technique has been developed for assessing the extent to which existing or potential materials for the construction of indwelling catheters become encrusted during exposure to infected urine. In this technique the enzyme urease is added to artificial urine containing albumin in a reaction vessel which contains the samples to be tested. Controlled replacement of reactants leads to appreciable formation of encrusting deposits which adhere firmly to the surface of the test samples. Deposits have the same chemical composition as those which encrust catheters in vivo.


1996 ◽  
Vol 69 (1) ◽  
pp. 36-45
Author(s):  
M. L. Kheifets ◽  
L. M. Kozhuro ◽  
A. A. Shipko ◽  
I. A. Senchilo

Sign in / Sign up

Export Citation Format

Share Document