Assessment of encrustation and physicochemical properties of poly(lactide‐glycolide) ‐ Papaverine hydrochloride coating on ureteral double‐J stents after long‐term flow of artificial urine

Author(s):  
Magdalena Antonowicz ◽  
Janusz Szewczenko ◽  
Anita Kajzer ◽  
Wojciech Kajzer ◽  
Joanna Jaworska ◽  
...  
2020 ◽  
pp. 181-191
Author(s):  
M. Tkachenko ◽  
N. Borys ◽  
Ye. Kovalenko

The research aims to establish the eff ectiveness of granular chalk use produced by «Slavuta-Calcium» Ltd. under growing Poliska–90 winter wheat variety, changing the physicochemical properties of grey forest soil and the wheat productivity. It also aims to establish optimal dosis of «Slavuta-Calcium» granular chalk as the meliorant and mineral fertilizer for grey forest soil in the system of winter wheat fertilization. In the temporary fi eld studies, various doses of nutrients N60–90–120P30–45–60K60–90–120 combined with «Slavuta–Calcium» granular chalk in a dose of Ca230–460–690 kg/ha of the active substance were studied against the background of secondary plowing of rotation products – soybean biomass that averaged 2.34 t/ha. Granular chalk is a modern complex highly eff ective meliorant with the content of Ca – 37.7 and Mg – 0.2 %, the mass fraction of carbonates (CaCO3 + MgCO3) makes at least 95 %. It is characterized by a high level of solubility when interacting with moisture in soil. It has a form of white granules, the mass fraction of 4.0–6.0 mm in size granules makes not less than 90 % and the one of 1.0 mm in size makes less than 5 %. Reactivity – 97 %. The granular chalk is advisable to apply on acidic soils, as a highly concentrated calcium-magnesium fertilizer, with the former as the dominant fertilizer, to optimize the physicochemical properties of the soil, as well as the plant nutrition system, in particular, increasing the availability of an element for assimilation by plants and as long-term ameliorants. The eff ectiveness of the use of mineral fertilizers, in particular acidic nitrogen on highly and medium acidic soils, after chemical reclamation is increased by 30–50 %, and slightly acidic by 15–20 %. The increase in productivity of crops from the combined eff ects of nutrients and chalk granulated is usually higher than when separately applied. The eff ectiveness of the integrated action of these elements is manifested in the growth of plant productivity and the quality of the resulting products, as well as the optimization of physical chemical properties and soil buff ering in the long term. In order to optimize the physicochemical properties of the arable layer of gray forest soil and the productive nutrition of agricultural crops, winter wheat, in particular, biogenic elements should be used in doses N60-90-120P30-45- 60K60-90-120 with granulated chalk «Slavuta-Calcium» in doses of Ca230-460-690 kg/ha of active substance. Granulated chalk obtained as a result of industrial grinding of solid sedimentary carbonate rocks of natural origin, subsequently under the infl uence of the granulation process of the starting material contains Ca and Mg carbonates of at least 95 %, dense granules which facilitates convenient mechanized application, as well as chalk suitable for accurate metered application on the quest map. Key words: granular chalk, gray forest soil, chemical reclamation, crop productivity.


2007 ◽  
Vol 12 (1) ◽  
pp. 46-50 ◽  
Author(s):  
Min-Hee Nam ◽  
Chang-Suk Kong ◽  
Soon-Sun Bak ◽  
Yang-Bong Lee ◽  
Sook-Hee Rhee ◽  
...  

2017 ◽  
Vol 7 (8) ◽  
pp. 828 ◽  
Author(s):  
Du Zhao ◽  
Fazhou Wang ◽  
Peng Liu ◽  
Lu Yang ◽  
Shuguang Hu ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 939
Author(s):  
Qiang Chen ◽  
Xingyi Zhang ◽  
Li Sun ◽  
Jianhua Ren ◽  
Yaru Yuan ◽  
...  

Tillage practices are critical for sustaining soil quality necessary for successful crop growth and productivity, but there are only few studies for strip tillage (ST) in the Mollisols region of Northeast China at present. A long-term (≥10-year) study was carried out to investigate the influence of within the tilled row (IR) and between rows (BR) in ST (10-year), conventional tillage (CT, 14-year) and no tillage (NT, 14-year) treatments on soil physicochemical properties. Soil samples were taken in May of 2019 at 0–5, 5–10, 10–20 and 20–30 cm depths and used to analyze bulk density (BD), soil aggregate distribution and stability, and soil organic carbon (SOC). Meanwhile, our study also explored the differences in seed emergence, soil moisture, and temperature during the seed emergence period, and yield of maize (Zea mays L.) among the different treatments. Similar soil properties were observed between ST-BR and NT, which showed they had a significantly greater BD, >0.25 mm water stable aggregate content (WR0.25) (especially in the amount of >2 mm and 1–2 mm size proportion), aggregate stability, and SOC than ST-IR and CT-IR at a depth of 0–20 cm. By improving soil conditions of seedbed, ST-IR and CT-IR increased soil temperature above NT by 1.64 °C and 1.80 °C, respectively, and ST-IR had a slight greater soil moisture than CT-IR in the top 10 cm layer during the seed emergence period. Late maize seed emergence was observed NT in than ST-IR and CT-IR and the average annual yields in ST were slightly greater than NT and CT, but the differences were not significant. Our results also showed that CT-BR had a poor soil structure and lower SOC than other treatments at 0–30 cm depth. We conclude from these long-term experimental results that ST could improve soil water-heat conditions to promote seed germination, maintain soil structure, and increase the maize yield and it should be applied in the Mollisols region of Northeast China.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 425 ◽  
Author(s):  
Edueng ◽  
Bergström ◽  
Gråsjö ◽  
Mahlin

This study shows the importance of the chosen method for assessing the glass-forming ability (GFA) and glass stability (GS) of a drug compound. Traditionally, GFA and GS are established using in situ melt-quenching in a differential scanning calorimeter. In this study, we included 26 structurally diverse glass-forming drugs (i) to compare the GFA class when the model drugs were produced by spray-drying with that when melt-quenching was used, (ii) to investigate the long-term physical stability of the resulting amorphous solids, and (iii) to investigate the relationship between physicochemical properties and the GFA of spray-dried solids and their long-term physical stability. The spray-dried solids were exposed to dry (<5% RH) and humid (75% RH) conditions for six months at 25 °C. The crystallization of the spray-dried solids under these conditions was monitored using a combination of solid-state characterization techniques including differential scanning calorimetry, Raman spectroscopy, and powder X-ray diffraction. The GFA/GS class assignment for 85% of the model compounds was method-dependent, with significant differences between spray-drying and melt-quenching methods. The long-term physical stability under dry condition of the compounds was predictable from GFA/GS classification and glass transition and crystallization temperatures. However, the stability upon storage at 75% RH could not be predicted from the same data. There was no strong correlation between the physicochemical properties explored and the GFA class or long-term physical stability. However, there was a slight tendency for compounds with a relatively larger molecular weight, higher glass transition temperature, higher crystallization temperature, higher melting point and higher reduced glass transition temperature to have better GFA and better physical stability. In contrast, a high heat of fusion and entropy of fusion seemed to have a negative impact on the GFA and physical stability of our dataset.


2013 ◽  
Vol 11 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Shin-Woo Ha ◽  
Corinne E. Camalier ◽  
M. Neale Weitzmann ◽  
George R. Beck ◽  
Jin-Kyu Lee

Sign in / Sign up

Export Citation Format

Share Document