Modified Johnson-Cook description of wide temperature and strain rate measurements made on a nickel-base superalloy

2016 ◽  
Vol 34 (3) ◽  
pp. 157-165 ◽  
Author(s):  
Jianjun Wang ◽  
Wei-Guo Guo ◽  
Penghui Li ◽  
Ping Zhou
2014 ◽  
Vol 1064 ◽  
pp. 49-54 ◽  
Author(s):  
Shuang Fang ◽  
Yun Peng Dong ◽  
Shu Yun Wang

The Nickel-base superalloy samples were prepared by the isothermal forging in different strain rates at 1070°C. The isothermal deformation tests were carried out at constant strain rate in a vacuum environment using the Thermecmastor (Fuji Electronic Industrial Co., Japan) with a capacity of 30 ton compressive force. All the samples were deformed to a true strain of 1.04 at deformation temperature 1070°C and strain rate 0.001s-1~0.1s-1 respectively. The result is The deformation strain rate determine the position and domain of AGG and the temperature determine the severity of AGG by deformation temperature and temperature rise. The most serious region of AGG is related to the specific CSL boundaries. The fraction of Ʃ3 boundary reaches the peak point value and fraction of Ʃ7 boundary reaches the valley point value in all the samples with different strain rates. The most serious region of AGG is also related to the residual strain. In the most serious region of AGG, more dislocation is used to prefer grain growth to recrystallization, which can refine grain.


Author(s):  
Kannan Subramanian ◽  
Harish P. Cherukuri

Superalloys are metallic alloys used for high temperature applications such as encountered in the aircraft industry and where resistance to deformation is a primary requirement. Alloy 718 is one such Nickel-base superalloy that resists deformation at elevated temperatures and is therefore difficult to hot work. One of the major hotworking operations is multi-pass shape rolling in which Alloy 718 undergoes multiple deformations in several passes along with reheating between passes. For a given composition of alloy, the high temperature flow stress is influenced to a large extent by the grain size of the microstructure. In the case of shape rolling in which the cross section changes from circular to oval in alternate passes, the correct working forces, which relate to gauge and shape control as well as to power requirements, can be estimated accurately only if the microstructure relevant to the specific pass of rolling is known. In addition, the microstructure present at the end of the rolling and cooling operations controls the product properties. Control of grain size is an increasingly important characteristic in hotworking. The narrow temperature range (980°C and 1120°C [1]) for hotworking of Alloy 718 makes the grain size control more difficult. During hotworking, Alloy 718 undergoes microscopic and mesoscopic events such as dynamic recrystallization (DRX), metadynamic recrystallization (MDRX) and static grain growth (SGG) depending on the temperature, strain rate and retained strain. Modeling these microstructural events is important in designing the rolling process. Due to the tremendous amount of time, cost and effort associated with experiments and industrial trials, numerical methods are resorted to because of the complexity of the variables involved in multi-pass rolling. One such popular numerical technique, finite element (FE) method can predict process variables such as strain, strain rate and temperature for the deformation process. In general, microstructural modeling relates these process variables to microstructural evolution. During microstructural modeling, constitutive equations describing the microstructural evolutions are developed using experiments, which can then be readily implemented in an FE package capable of modeling rolling processes.


2010 ◽  
Vol 654-656 ◽  
pp. 512-515
Author(s):  
Su Gui Tian ◽  
Shu Zhang ◽  
Li Li Yu ◽  
Hui Chen Yu ◽  
Ben Jiang Qian

An investigation has been made into the microstructure and creep behaviors of [110] oriented single crystal nickel-base superalloy. Results show that, after a full heat treated, the cubic  phase is coherently embedded in the matrix and regularly arranged along the <100> orientation. During creep, the cubic phase in the alloy is transformed into the rafted structure lying 45 relative to the direction of the applied stress. Under the condition of the applied stress of 137 MPa at 1040°C, the alloy displays a higher strain rate and shorter creep lifetime. The deformation mode of the alloy during creep is dislocations activated within the matrix channels and the rafted phase. Dislocation slip activated easily on the Roof-type channel is thought to be the main reason of the alloy having higher strain rate and shorter creep lifetime.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2990
Author(s):  
Rafael Sancho ◽  
Javier Segurado ◽  
Borja Erice ◽  
María-Jesús Pérez-Martín ◽  
Francisco Gálvez

The flow stress behaviour of a directionally solidified nickel-base superalloy, MAR-M247, is presented through the combination of experiments and crystal-plasticity simulations. The experimental campaign encompassed quasi-static and dynamic testing in the parallel and perpendicular orientation with respect to the columnar grains. The material showed low strain-rate sensitivity in all cases. Virtual samples were generated with DREAM3d and each grain orientation was established according to the DS nature of the alloy. The elasto-visco-plastic response of each crystal is given by phenomenological-base equations, considering the dislocation–dislocation interactions among different slip systems. The hardening-function constants and the strain-rate sensitivity parameter were fitted with the information from tests parallel to the grain-growth direction and the model was able to predict with accuracy the experimental response in the perpendicular direction, confirming the suitability of the model to be used as a tool for virtual testing. Simulations also revealed that in oligocrystalline structures of this type, the yield-strength value is controlled by the grains with higher Schmid factor, while this influence decreases when plastic strain increases. Moreover, the analysis of the micro-fields confirmed that grains perpendicular to the loading axis are prone to nucleate cavities since the stresses in these regions can be twice the external applied stress.


2017 ◽  
Vol 128 ◽  
pp. 123-133 ◽  
Author(s):  
Guoai He ◽  
Liming Tan ◽  
Feng Liu ◽  
Lan Huang ◽  
Zaiwang Huang ◽  
...  

2013 ◽  
Vol 834-836 ◽  
pp. 432-436 ◽  
Author(s):  
Fu Wei Kang ◽  
Xue Min Zhang ◽  
Jian Fei Sun ◽  
Jun Ling Zhao

The hot deformation behaviors of the nickel-base superalloy GH4169 have been studied by isothermal constant true strain rate compression testing at 950°C-1150°C, 0.01s-1-10s-1and the height reduction 50%. The processing maps of GH4169 alloy have been constructed at different strains on the basis of testing data using a dynamic materials modeling. The maps exhibited two domains: the first at 950°C - 1100°C and strain rate higher than 0.1s-1, with a peak efficiency of power dissipation of 0.1, and the second at 950°C-1100°C and strain rate lower than 1s-1, with a peak efficiency of power dissipation of 0.4 and the strain rate of 0.01s-1. On the basis of microstructure observations, the first exhibits adiabatic shear bands, which called instability domain, the second represents fine recrystallized grain structures, which called stability domain. The optimal hot-working parameters are at 1050°C, 0.01s-1.


Sign in / Sign up

Export Citation Format

Share Document