Farmers' insect pest management practices and pesticidal plant use in the protection of stored maize and beans in Southern Africa

2010 ◽  
Vol 57 (1) ◽  
pp. 41-49 ◽  
Author(s):  
John Kamanula ◽  
Gudeta W. Sileshi ◽  
Steven R. Belmain ◽  
Phosiso Sola ◽  
Brighton M. Mvumi ◽  
...  
2019 ◽  
Vol 11 ◽  
pp. 117954331984032 ◽  
Author(s):  
Seung-Joon Ahn ◽  
Kelly Donahue ◽  
Youngho Koh ◽  
Robert R. Martin ◽  
Man-Yeon Choi

RNA interference (RNAi) is a convenient tool to identify and characterize biological functions in organisms. Recently, it has become an alternative to chemical insecticides as a biologically based control agent. This promising technology has the potential to avoid many problems associated with conventional chemical insecticides. In order for RNAi application to be practical for field use, a major hurdle is the development of a cost-effective system of double-stranded RNA (dsRNA) production for a large quantity of dsRNA. A handful of research reports has demonstrated microbial-based dsRNA production using L4440 vector and HT115 (DE3) Escherichia coli for application to vertebrate and invertebrate systems. However, the dsRNA yield, production efficiency, and biological purity from this in vitro system is still unclear. Thus, our study detailed biochemical and molecular tools for large-scale dsRNA production using the microbial system and investigated the production efficiency and yield of crude and purified dsRNAs. An unrelated insect gene, green fluorescent protein (GFP), and an insect neuropeptide gene, pyrokinin (PK) identified from Drosophila suzukii, were used to construct the recombinant L4440 to be expressed in the HT115 (DE3) cell. A considerable amount of dsRNA, 19.5 µg/mL of liquid culture, was isolated using ultrasonic disruption followed by phenol extraction. The sonication method was further evaluated to extract crude dsRNA without the additional phenol extraction and nuclease treatments and also to reduce potential bacterial viability. The results suggest that the ultrasonic method saved time and costs to isolate crude dsRNA directly from large volumes of cell culture without E coli contamination. We investigated whether the injection of PK dsRNA into flies resulted in increased adult mortality, but it was not statistically significant at 95% confidence level. In this study, the microbial-based dsRNA production has potential for applied RNAi technology to complement current insect pest management practices.


2005 ◽  
Vol 15 (2) ◽  
pp. 232-238 ◽  
Author(s):  
Joe R. Williamson ◽  
Donn T. Johnson

Agricultural monocultures with intensive pest management practices reduce diversity and create instability in agricultural ecosystems, thereby increasing reliance upon pesticides. This study compares the influence of three insect pest management programs in vineyards on arthropod diversity as well as parasitism and control of grape berry moth (Endopiza viteana), the key pest of grapes (Vitis labrusca) in eastern North America. Vineyards in Bald Knob, Hindsville, Judsonia, Lowell, and Searcy, Ark., were managed with a range of intensity of insecticide use, a reduced insecticide program with Exosex-GBM dispensers for mating disruption, or no pesticide use in abandoned vineyards. Arthropod diversity and carabid (Carabidae) density in each vineyard was sampled with pitfall traps. Grape berry moth flight was monitored by pheromone traps. Grape berry moth–infested grapes were collected from the field and reared in the lab until parasites or moths emerged. There were significant differences in arthropod diversity between vineyard sites, with Shannon diversity index values generally higher in woods and managed vineyards with conventional sprays and/or mating disruption than in abandoned sites. Shannon index values for arthropod diversity were significantly lower at the vineyard edge in Searcy (recently abandoned), vineyard center and edge in Bald Knob (abandoned), and the vineyard edge in Hindsville (conventional sprays). In 2003, carabid density was significantly highest in the edge and center of the Hindsville vineyard (high insecticide usage) and the abandoned Bald Knob vineyard had significantly lowest carabid density. Apparently, insecticide sprays resulted in more food on the vineyard floor for carabids. The vineyard floor management was too variable among vineyards to deduce its effect on carabid density. With some exceptions, low-spray and no-spray vineyards generally showed greater diversity and parasitism of grape berry moth than high-spray vineyards. Parasitism was higher in some high-spray vineyards than in low-spray with mating disruption vineyards. Grape berry moth flight and berry damage were more dependent on spray timing than intensity. This study demonstrates that insect pest management programs impact arthropod diversity and parasitism. Further testing is needed to determine why parasitism of grape berry moth decreased in the vineyards using the mating disruption tactic.


2019 ◽  
Vol 11 (15) ◽  
pp. 4076 ◽  
Author(s):  
Hudson C. Laizer ◽  
Musa N. Chacha ◽  
Patrick A. Ndakidemi

Weeds and insect pests are among the serious constraints in common bean production in most rural communities. A survey of 169 smallholder farmers was conducted in two common bean-growing districts in northern Tanzania. The aim was to assess farmers’ knowledge, perceptions, current management practices and challenges in order to develop sustainable weed and insect pest management strategies. The results revealed that 83% of farmers perceived insect pests as the major constraint in common bean production, while 73% reported weeds as the main drawback. Insect pest management was mainly achieved through the use of synthetic pesticides, however, only 24% of farmers were able to apply, the rest could not afford due to high cost, limited access and lack of knowledge. Only 6.5% of farmers were aware of non-chemical methods and 2.1% did not practice any method in managing insect pests, both in the field and during storage. Moreover, farmers generally relied on experience in managing insect pests and weeds, and about 43% did not see the need to consult extension officers. These findings indicate that there is a need to sensitize and train farmers on the sustainable methods for pest and weed management in common bean farming systems in northern Tanzania.


2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


Sign in / Sign up

Export Citation Format

Share Document