Temperature effects on blood‐oxygen equilibria in relation to movements of the bat ray,Myliobatis Californicain tomales bay, California

1994 ◽  
Vol 24 (4) ◽  
pp. 227-235 ◽  
Author(s):  
Todd E. Hopkins ◽  
Joseph J. Cech
2018 ◽  
Vol 44 (3) ◽  
pp. 949-967 ◽  
Author(s):  
Diego Bernal ◽  
Joseph P. Reid ◽  
Julie M. Roessig ◽  
Shinsyu Matsumoto ◽  
Chugey A. Sepulveda ◽  
...  

Author(s):  
L. S. Lin ◽  
K. P. Gumz ◽  
A. V. Karg ◽  
C. C. Law

Carbon and temperature effects on carbide formation in the carburized zone of M50NiL are of great importance because they can be used to control surface properties of bearings. A series of homogeneous alloys (with M50NiL as base composition) containing various levels of carbon in the range of 0.15% to 1.5% (in wt.%) and heat treated at temperatures between 650°C to 1100°C were selected for characterizations. Eleven samples were chosen for carbide characterization and chemical analysis and their identifications are listed in Table 1.Five different carbides consisting of M6C, M2C, M7C3 and M23C6 were found in all eleven samples examined as shown in Table 1. M6C carbides (with least carbon) were found to be the major carbide in low carbon alloys (<0.3% C) and their amounts decreased as the carbon content increased. In sample C (0.3% C), most particles (95%) encountered were M6C carbide with a particle sizes range between 0.05 to 0.25 um. The M6C carbide are enriched in both Mo and Fe and have a fee structure with lattice parameter a=1.105 nm (Figure 1).


2008 ◽  
Vol 44 ◽  
pp. 63-84 ◽  
Author(s):  
Chris E. Cooper

Optimum performance in aerobic sports performance requires an efficient delivery to, and consumption of, oxygen by the exercising muscle. It is probable that maximal oxygen uptake in the athlete is multifactorial, being shared between cardiac output, blood oxygen content, muscle blood flow, oxygen diffusion from the blood to the cell and mitochondrial content. Of these, raising the blood oxygen content by raising the haematocrit is the simplest acute method to increase oxygen delivery and improve sport performance. Legal means of raising haematocrit include altitude training and hypoxic tents. Illegal means include blood doping and the administration of EPO (erythropoietin). The ability to make EPO by genetic means has resulted in an increase in its availability and use, although it is probable that recent testing methods may have had some impact. Less widely used illegal methods include the use of artificial blood oxygen carriers (the so-called ‘blood substitutes’). In principle these molecules could enhance aerobic sports performance; however, they would be readily detectable in urine and blood tests. An alternative to increasing the blood oxygen content is to increase the amount of oxygen that haemoglobin can deliver. It is possible to do this by using compounds that right-shift the haemoglobin dissociation curve (e.g. RSR13). There is a compromise between improving oxygen delivery at the muscle and losing oxygen uptake at the lung and it is unclear whether these reagents would enhance the performance of elite athletes. However, given the proven success of blood doping and EPO, attempts to manipulate these pathways are likely to lead to an ongoing battle between the athlete and the drug testers.


Sign in / Sign up

Export Citation Format

Share Document