Incremental hole drilling and X-ray diffraction techniques to the residual stresses determination introduced by shot peening in titanium alloy

2001 ◽  
Vol 9 (2) ◽  
pp. 337-344 ◽  
Author(s):  
G. Montay ◽  
A. Cherouat ◽  
J. Lu
2014 ◽  
Vol 996 ◽  
pp. 445-450 ◽  
Author(s):  
Wulf Pfeiffer ◽  
Eduard Reisacher ◽  
Michael Windisch ◽  
Markus Kahnert

Friction stir welding (FSW) is a well-known technique which allows joining of metal parts without severe distortion. Because FSW involves less heat input relative to conventional welding, it may be assumed that cutting specimens from larger friction stir welded components results in a negligible redistribution of residual stresses. The aim of the investigations was to verify these assumptions for a welded aluminum plate and a circumferentially-welded aluminum cylinder. Strain gage measurements, X-ray diffraction and the incremental hole drilling method were used.


2000 ◽  
Vol 347-349 ◽  
pp. 138-143 ◽  
Author(s):  
Joao P. Nobre ◽  
Martin Kornmeier ◽  
A. Morão Dias ◽  
Berthold Scholtes

2014 ◽  
Vol 996 ◽  
pp. 269-276
Author(s):  
João P. Nobre ◽  
Miguel Oliveira ◽  
Armando Albertazzi ◽  
Matias Viotti ◽  
António Castanhola Batista ◽  
...  

The incremental hole-drilling technique was applied to determine residual stress profiles in shot-peened steel layers. The accuracy of using an enhanced Digital Speckle Pattern Interferometry technique for measuring the strain relaxation arising around the drilled holes and, consequently, the in-depth residual stress distribution induced by shot-peening, was evaluated. The experimental results were systematically compared with those determined using standard electric strain-gauges. The X-ray diffraction technique was chosen as reference due to its high accuracy to determine shot-peening residual stresses.


2000 ◽  
Vol 122 (3) ◽  
pp. 368-373 ◽  
Author(s):  
Josette Devaux ◽  
Ge´rard Mottet ◽  
Jean-Michel Bergheau ◽  
Surender K. Bhandari ◽  
Claude Faidy

This paper presents the state of the art and the progress made in the numerical simulation of the stress state in a complex multi-material structure, using not only sophisticated finite element tools, but also the simplified engineering methods. A comparison of the numerical results concerning residual stresses is made with those measured using X-ray diffraction method and incremental hole-drilling technique. Finally, an example is given on the analysis of a fully circumferential crack in a typical bimetallic weld under pressure, thermal, and residual stresses. [S0094-9930(00)00703-4]


2006 ◽  
Vol 514-516 ◽  
pp. 768-773
Author(s):  
Joao P. Nobre ◽  
Altino Loureiro ◽  
António Castanhola Batista ◽  
A. Morão Dias

In this work the reliability of the hole-drilling technique (HDT) for measuring welding residual stresses was analysed. HDT residual stress results were systematically compared with those determined by X-ray diffraction. A systematic overestimation of the residual stresses determined by HDT was observed, which was mainly attributed to the possibility of the so-called plasticity effect occurring. Experimental results were discussed taking the measurement principles of both techniques into consideration. In addition, preliminary results of a numerical study, using the finite element method, will be presented for a better understanding of the plasticity effect on HDT residual stress results.


2013 ◽  
Vol 768-769 ◽  
pp. 464-469
Author(s):  
Maria José Marques ◽  
António Castanhola Batista ◽  
Luís Coelho ◽  
Joao P. Nobre ◽  
Altino Loureiro

The samples studied in this paper were performed from carbon steel plates, cladded in one of the faces with stainless steel filler metals by submerged arc welding (SAW). After cladding work, the samples were submitted to post-weld heat treatments at different conditions and afterwards stainless steel coating surfaces were milled and mechanically polished, as in the industrial application. The residual stress analysis was performed by X-ray diffraction (XRD) and incremental hole-drilling methods (IHDM). The residual stresses profiles presented different in depth values in each sample, depending on the heat treatment conditions. The hole-drilling method was applied in several points of each stainless steel sample surface and the results presented similar evolution profiles. However compressive stresses increase with the increase of heat treatment temperature.


2006 ◽  
Vol 524-525 ◽  
pp. 161-166 ◽  
Author(s):  
Choumad Ould ◽  
Emmanuelle Rouhaud ◽  
Manuel François ◽  
Jean Louis Chaboche

Experimental analysis can be very costly and time consuming when searching for the optimal process parameters of a new shot-peening configuration (new material, new geometry of the part…). The prediction of compressive residual stresses in shot-peened parts has been an active field of research for the past fifteen years and several finite elements models have been proposed. These models, although they give interesting qualitative results, over-estimate, most of the time, the level of the maximal compressive stresses. A better comprehension of the phenomena and of the influence of the parameters used in the model can only carry a notable improvement to the prediction of the stresses. The fact that the loading path is cyclic and is not radial led us to think that a model including kinematic hardening would be better adapted for the modelling of shot peening. In this article we present the results of a simulation of a double impact for several constitutive laws. We study the effect of the chosen constitutive law on the level of residual stresses and, in particular, we show that kinematic hardening, even identified on the same tensile curve than isotropic hardening, leads to lower stress levels as compared with isotropic hardening. Furthermore, the overall shape of the stress distribution within the depth is significantly different for the two types of hardening behaviour. Further, in order to check the modelisations, local measurements were carried on with X-ray diffraction on a large size impact and correlated with the topography of the impact.


2019 ◽  
Vol 34 (2) ◽  
pp. 164-177 ◽  
Author(s):  
Xuesong Fu ◽  
Zhiqiang Niu ◽  
Ying Deng ◽  
Jie Zhang ◽  
Chongyuan Liu ◽  
...  

2011 ◽  
Vol 681 ◽  
pp. 273-277 ◽  
Author(s):  
Pierre Renaud ◽  
Philippe Bristiel ◽  
Laurent Barrallier ◽  
Marc Desvignes ◽  
Regis Kubler

This experimental study focuses on the influence of shot peening on parts initially treated by carburizing or carbonitriding. Experimental investigations have been carried out: optical observations of the microstructures, in-depth hardness measurement, X-ray diffraction analysis of residual stresses. A comparison is made between the carburizing anad the carbonitriding treatments.


Author(s):  
Christopher M. Gill ◽  
Philip J. Withers ◽  
Alex Evans ◽  
Neil Fox ◽  
Koichi Akita

A layer of compressive residual stress extending from the surface of a component can help to extend fatigue life, but it must remain stable during applied service loading. Metal shot and glass bead peening are traditionally used; introducing a shallow (100–300μm) layer of compressive residual stress and a highly cold worked surface. Laser peening and deep rolling are capable of introducing much deeper compressive residual stresses combined with lower levels of cold work. In this paper we report on the level of shakedown of residual stress brought about by constant strain amplitude fatigue. Glass and metal shot peened, laser peened and deep rolled Ti-6Al-4V samples have been studied. The residual stress profiles as a function of depth have been measured using neutron diffraction, laboratory x-ray diffraction and a hybrid hole-drilling/laboratory x-ray diffraction method. The magnitude and depth of cold work determined for each of the treatment methods. The extent of subsequent residual stress shakedown under different strain amplitudes and load ratios, in deep rolled, glass bead and metal shot peened samples is also assessed.


Sign in / Sign up

Export Citation Format

Share Document