Optimization of lactose derivative hetero-oligosaccharides production using whey as the acceptor molecule by an active glucansucrase

Author(s):  
Mohammad Kabli ◽  
Hümeyra İspirli ◽  
Mohammed Balubaid ◽  
Osman Taylan ◽  
Mustafa Tahsin Yılmaz ◽  
...  
Keyword(s):  
1979 ◽  
Vol 44 (2) ◽  
pp. 613-625 ◽  
Author(s):  
Valentina I. Gulyaeva ◽  
Antonín Holý

The present paper studies the effect of the modification of heterocyclic base, sugar moiety and the presence of phosphate group on the nucleoside acceptors in the synthesis of dinucleoside phosphates from adenosine 2',3'-cyclic phosphate as donor, catalyzed by nonspecific acidic extracellular and intracellular ribonucleases from Penicillium claviforme. The enzyme binds specifically the acceptor molecule, preferring cytosine nucleosides. It requires the presence of the whole sugar moiety, an exact mutual orientation of the heterocyclic base and the reaction center (5'-hydroxy group), and a suitable conformation of the acceptor molecule. The enzyme-acceptor bond is homochiral and the presence of the N3-H group in the pyrimidine ring is important. The reaction between the donor and the acceptor is bimolecular and is competitively inhibited by some purine nucleosides.


1967 ◽  
Vol 105 (2) ◽  
pp. 473-482 ◽  
Author(s):  
M. J. Parry ◽  
D G Walker

1. Magnesium ions are the most effective bivalent ions in the glucokinase reaction. 2. The molecular weight of rat hepatic glucokinase is 48000–49000 as assessed by gel filtration on Sephadex G-100. 3. Anomalous kinetic behaviour at low glucose concentrations appears to be due to the formation during the purification procedure of fragments possessing modified catalytic properties, but is unlikely to be of physiological significance. 4. Extension of previous studies (Parry & Walker, 1966) suggests that glucokinase catalyses a reaction of the random Bi Bi type similar to that of yeast hexokinase. 5. The inhibitory effects of various thiol reagents suggest that a thiol group may be involved at or near the binding site of the acceptor molecule.


2018 ◽  
Vol 5 (11) ◽  
pp. 1748-1755 ◽  
Author(s):  
Angela Benito-Hernández ◽  
Mardia T. El-Sayed ◽  
Juan T. López Navarrete ◽  
M. Carmen Ruiz Delgado ◽  
Berta Gómez-Lor

A promising candidate for ambipolar charge transport: a disk-like platform, diazatruxenone, as a novel, compact and planar donor–acceptor molecule.


1972 ◽  
Vol 129 (3) ◽  
pp. 645-655 ◽  
Author(s):  
J. S. Heller ◽  
C. L. Villemez

A neutral-detergent-solubilized-enzyme preparation derived from Phaseolus aureus hypocotyls contains two types of glycosyltransferase activity. One, mannosyltransferase enzyme activity, utilizes GDP-α-d-mannose as the sugar nucleotide substrate. The other, glucosyltransferase enzyme activity, utilizes GDP-α-d-glucose as the sugar nucleotide substrate. The soluble enzyme preparation catalyses the formation of what appears to be a homopolysaccharide when either sugar nucleotide is the only substrate present. A β-(1→4)-linked mannan is the only polymeric product when only GDP-α-d-mannose is added. A β-(1→4)-linked glucan is the only polymeric product when only GDP-α-d-glucose is added. In the presence of both sugar nucleotides, however, a β-(1→4)-linked glucomannan is formed. There are indications that endogenous sugar donors may be present in the enzyme preparation. There appear to be only two glycosyltransferases in the enzyme preparation, each catalysing the transfer of a different sugar to the same type of acceptor molecule. The glucosyltransferase requires the continual production of mannose-containing acceptor molecules for maintenance of enzyme activity, and is thereby dependent upon the activity of the mannosyltransferase. The mannosyltransferase, on the other hand, does not require the continual production of glucose-containing acceptors for maintenance of enzyme activity, but is severely inhibited by GDP-α-P-glucose. These properties promote the synthesis of β-(1→4)-linked glucomannan rather than β-(1→4)-linked glucan plus β-(1→4)-linked mannan when both sugar nucleotide substrates are present.


1995 ◽  
Vol 99 (21) ◽  
pp. 8918-8926 ◽  
Author(s):  
Gary P. Wiederrecht ◽  
Walter A. Svec ◽  
Mark P. Niemczyk ◽  
Michael R. Wasielewski

1978 ◽  
Vol 32 (1) ◽  
pp. 337-356
Author(s):  
M.E. Callow ◽  
S.J. Coughlan ◽  
L.V. Evans

The cell wall of 24-h zygotes of Fucus serratus is composed of 3 layers—an inner fibrillar layer (sulphated fucan), an outer fibrillar layer (alginic aicd/cellulose) and an exterior amorphous layer (sulphated fucan, alginic acid). The 2 layers containing sulphated fucan are preferentially thickened at the rhizoid pole. Light- and electron-microscope autoradiographic pulse-chase experiments on 22-h zygotes using 35SO2-(4) show the Golgi bodies to be the sites of fucan sulphation. The isolation and characterization of isolated Golgi-rich fractions from 22-h zygotes shows that the first detectable labelled macromolecule is associated with these fractions 2 min after addition of 35SO2-(4). The sulphate acceptor molecule has been partially characterized. 35S-APS and 35S-paps are detectable in the soluble fraction 0.5 min after addition of 35SO2-(4). The results are discussed in relation to other published work on the differentiation of Fucus embryos and on polysaccharide sulphation.


Sign in / Sign up

Export Citation Format

Share Document