A three-dimensional collagen-fiber network model of the extracellular matrix for the simulation of the mechanical behaviors and micro structures

2017 ◽  
Vol 20 (9) ◽  
pp. 991-1003 ◽  
Author(s):  
Shoubin Dong ◽  
Zetao Huang ◽  
Liqun Tang ◽  
Xiaoyang Zhang ◽  
Yongrou Zhang ◽  
...  
Author(s):  
Alan E. Woessner ◽  
Jake D. Jones ◽  
Nathan J. Witt ◽  
Edward A. Sander ◽  
Kyle P. Quinn

Skin is a heterogeneous tissue that can undergo substantial structural and functional changes with age, disease, or following injury. Understanding how these changes impact the mechanical properties of skin requires three-dimensional (3D) quantification of the tissue microstructure and its kinematics. The goal of this study was to quantify these structure-function relationships via second harmonic generation (SHG) microscopy of mouse skin under tensile mechanical loading. Tissue deformation at the macro- and micro-scale was quantified, and a substantial decrease in tissue volume and a large Poisson’s ratio was detected with stretch, indicating the skin differs substantially from the hyperelastic material models historically used to explain its behavior. Additionally, the relative amount of measured strain did not significantly change between length scales, suggesting that the collagen fiber network is uniformly distributing applied strains. Analysis of undeformed collagen fiber organization and volume fraction revealed a length scale dependency for both metrics. 3D analysis of SHG volumes also showed that collagen fiber alignment increased in the direction of stretch, but fiber volume fraction did not change. Interestingly, 3D fiber kinematics was found to have a non-affine relationship with tissue deformation, and an affine transformation of the micro-scale fiber network overestimates the amount of fiber realignment. This result, along with the other outcomes, highlights the importance of accurate, scale-matched 3D experimental measurements when developing multi-scale models of skin mechanical function.


2015 ◽  
Vol 112 (37) ◽  
pp. E5117-E5122 ◽  
Author(s):  
Christopher A. R. Jones ◽  
Matthew Cibula ◽  
Jingchen Feng ◽  
Emma A. Krnacik ◽  
David H. McIntyre ◽  
...  

Collagen gels are widely used in experiments on cell mechanics because they mimic the extracellular matrix in physiological conditions. Collagen gels are often characterized by their bulk rheology; however, variations in the collagen fiber microstructure and cell adhesion forces cause the mechanical properties to be inhomogeneous at the cellular scale. We study the mechanics of type I collagen on the scale of tens to hundreds of microns by using holographic optical tweezers to apply pN forces to microparticles embedded in the collagen fiber network. We find that in response to optical forces, particle displacements are inhomogeneous, anisotropic, and asymmetric. Gels prepared at 21 °C and 37 °C show qualitative difference in their micromechanical characteristics. We also demonstrate that contracting cells remodel the micromechanics of their surrounding extracellular matrix in a strain- and distance-dependent manner. To further understand the micromechanics of cellularized extracellular matrix, we have constructed a computational model which reproduces the main experiment findings.


2006 ◽  
Vol 128 (5) ◽  
pp. 725-732 ◽  
Author(s):  
H. James Pfaeffle ◽  
Kenneth J. Fischer ◽  
Arun Srinivasa ◽  
Theodore Manson ◽  
Savio L-Y. Woo ◽  
...  

Fiber network theory was developed to describe cloth, a thin material with strength in the fiber directions. The interosseous ligament (IOL) of the forearm is a broad, thin ligament with highly aligned fibers. The objectives of this study were to develop a model of the stress and strain distributions in the IOL, based on fiber network theory, to compare the strains from the model with the experimentally measured strains, and to evaluate the force distribution across the ligament fibers from the model. The geometries of the radius, ulna, and IOL were reconstructed from CT scans. Position and orientation of IOL insertion sites and force in the IOL were measured during a forearm compression experiment in pronation, neutral rotation, and supination. An optical image-based technique was used to directly measure strain in two regions of the IOL in neutral rotation. For the network model, the IOL was represented as a parametric ruled three-dimensional surface, with rulings along local fiber directions. Fiber strains were calculated from the deformation field, and fiber stresses were calculated from the strains using average IOL tensile properties from a previous study. The in situ strain in the IOL was assumed uniform and was calculated so that the net force predicted by the network model in neutral rotation matched the experimental result. The net force in the IOL was comparable to experimental results in supination and pronation. The model predicted higher stress and strain in fibers near the elbow in neutral rotation, and higher stresses in fibers near the wrist in supination. Strains in neutral forearm rotation followed the same trends as those measured experimentally. In this study, a model of stress and strain in the IOL utilizing fiber network theory was successfully implemented. The model illustrates variations in the stress and strain distribution in the IOL. This model can be used to show surgeons how different fibers are taut in different forearm rotation positions—this information is important for understanding the biomechanical role of the IOL and for planning an IOL reconstruction.


2015 ◽  
Vol 309 (2) ◽  
pp. H276-H284 ◽  
Author(s):  
S. Hamed Alavi ◽  
Aditi Sinha ◽  
Earl Steward ◽  
Jeffrey C. Milliken ◽  
Arash Kheradvar

The extracellular matrix of the atrioventricular (AV) valves' leaflets has a key role in the ability of these valves to properly remodel in response to constantly varying physiological loads. While the loading on mitral and tricuspid valves is significantly different, no information is available on how collagen fibers change their orientation in response to these loads. This study delineates the effect of physiological loading on AV valves' leaflets microstructures using Second Harmonic Generation (SHG) microscopy. Fresh natural porcine tricuspid and mitral valves' leaflets ( n = 12/valve type) were cut and prepared for the experiments. Histology and immunohistochemistry were performed to compare the microstructural differences between the valves. The specimens were imaged live during the relaxed, loading, and unloading phases using SHG microscopy. The images were analyzed with Fourier decomposition to mathematically seek changes in collagen fiber orientation. Despite the similarities in both AV valves as seen in the histology and immunohistochemistry data, the microstructural arrangement, especially the collagen fiber distribution and orientation in the stress-free condition, were found to be different. Uniaxial loading was dependent on the arrangement of the fibers in their relaxed mode, which led the fibers to reorient in-line with the load throughout the depth of the mitral leaflet but only to reorient in-line with the load in deeper layers of the tricuspid leaflet. Biaxial loading arranged the fibers in between the two principal axes of the stresses independently from their relaxed states. Unlike previous findings, this study concludes that the AV valves' three-dimensional extracellular fiber arrangement is significantly different in their stress-free and uniaxially loaded states; however, fiber rearrangement in response to the biaxial loading remains similar.


2019 ◽  
Vol 5 (11) ◽  
pp. 5669-5680 ◽  
Author(s):  
Naoko Nakamura ◽  
Tsuyoshi Kimura ◽  
Kwangwoo Nam ◽  
Toshiya Fujisato ◽  
Hiroo Iwata ◽  
...  

2021 ◽  
pp. 105678952110286
Author(s):  
H Zhang ◽  
J Woody Ju ◽  
WL Zhu ◽  
KY Yuan

In a recent companion paper, a three-dimensional isotropic elastic micromechanical framework was developed to predict the mechanical behaviors of the innovative asphalt patching materials reinforced with a high-toughness, low-viscosity nanomolecular resin, dicyclopentadiene (DCPD), under the splitting tension test (ASTM D6931). By taking advantage of the previously proposed isotropic elastic-damage framework and considering the plastic behaviors of asphalt mastic, a class of elasto-damage-plastic model, based on a continuum thermodynamic framework, is proposed within an initial elastic strain energy-based formulation to predict the behaviors of the innovative materials more accurately. Specifically, the governing damage evolution is characterized through the effective stress concept in conjunction with the hypothesis of strain equivalence; the plastic flow is introduced by means of an additive split of the stress tensor. Corresponding computational algorithms are implemented into three-dimensional finite elements numerical simulations, and the outcomes are systemically compared with suitably designed experimental results.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1629
Author(s):  
Colin H. Quinn ◽  
Andee M. Beierle ◽  
Elizabeth A. Beierle

In the quest to advance neuroblastoma therapeutics, there is a need to have a deeper understanding of the tumor microenvironment (TME). From extracellular matrix proteins to tumor associated macrophages, the TME is a robust and diverse network functioning in symbiosis with the solid tumor. Herein, we review the major components of the TME including the extracellular matrix, cytokines, immune cells, and vasculature that support a more aggressive neuroblastoma phenotype and encumber current therapeutic interventions. Contemporary treatments for neuroblastoma are the result of traditional two-dimensional culture studies and in vivo models that have been translated to clinical trials. These pre-clinical studies are costly, time consuming, and neglect the study of cofounding factors such as the contributions of the TME. Three-dimensional (3D) bioprinting has become a novel approach to studying adult cancers and is just now incorporating portions of the TME and advancing to study pediatric solid. We review the methods of 3D bioprinting, how researchers have included TME pieces into the prints, and highlight present studies using neuroblastoma. Ultimately, incorporating the elements of the TME that affect neuroblastoma responses to therapy will improve the development of innovative and novel treatments. The use of 3D bioprinting to achieve this aim will prove useful in developing optimal therapies for children with neuroblastoma.


2021 ◽  
Vol 11 (7) ◽  
pp. 3262
Author(s):  
Neill J. Turner

The present Special Issue comprises a collection of articles addressing the many ways in which extracellular matrix (ECM), or its components parts, can be used in regenerative medicine applications. ECM is a dynamic structure, composed of a three-dimensional architecture of fibrous proteins, proteoglycans, and glycosaminoglycans, synthesized by the resident cells. Consequently, ECM can be considered as nature’s ideal biologic scaffold material. The articles in this Special Issue cover a range of topics from the use of ECM components to manufacture scaffold materials, understanding how changes in ECM composition can lead to the development of disease, and how decellularization techniques can be used to develop tissue-derived ECM scaffolds for whole organ regeneration and wound repair. This editorial briefly summarizes the most interesting aspects of these articles.


Sign in / Sign up

Export Citation Format

Share Document