Development of a Structural Robustness Index against tsunamis for hospitals

Author(s):  
Hashan Hasalanka ◽  
C. S. A. Siriwardana ◽  
Devmini Kularatne ◽  
W. P. S. Dias
Author(s):  
Qiwen Jin ◽  
Zheng Liu

In-service bridges, under long-term service operational environment, are usually accompanied by different damage types. Traditional method for the measure point arrangement of in-service bridge SHM is usually based on engineering experience. A large number of SHM sensors are usually arranged on the structure, followed by a high engineering cost and a heavy maintenance task. These sensors will also produce large amounts of data, creating a challenge for operators requiring to deal with data processing in an effective manner. This study serves as a part of the series of studies on the measure point arrangement strategy of in-service bridge SHM. In this study, the SHM sensor measure point arrangement of in-service continuous girder bridge (a common structural style of high way bridge in China) is proposed. Two-span continuous beam, three-span continuous beam, and four-span continuous beam are taken as examples. Detailed comparison and verification are also performed with consideration of numerical simulation and previous studies. Different traffic speeds and different bridge spans are considered. The effect of different damage locations and different damage degrees are analyzed in detail. This study shows that a general similar trend can be observed for the structural robustness of in-service continuous girder bridge. The elements with smaller structural robustness of this kind of bridge are basically located around the middle cross section of side spans (first span and last span), followed by the middle span. Moreover, the numerical value of structural robustness of different elements in a continuous girder bridge is significantly different from each other, due to the complexity of the joint effect of different traffic speeds and damage locations. Therefore, the measure point should be generally arranged at the side span firstly, followed by the middle span. With consideration of the specific traffic speed and damage location in engineering application, a detailed analysis is also proposed for the further optimization of SHM sensor measure point arrangement. Once the elements are arranged in order of the numerical value of structural robustness, the SHM sensor measure point arrangement of this kind of bridge can be more targeted, and the number of sensors can also be greatly reduced.


2021 ◽  
Vol 244 ◽  
pp. 112742
Author(s):  
Mohammad Shoghijavan ◽  
Uwe Starossek

2021 ◽  
Vol 26 (2) ◽  
pp. 26
Author(s):  
Qi-Wen Jin ◽  
Zheng Liu ◽  
Shuan-Hai He

Structural reliability and structural robustness, from different research fields, are usually employed for the evaluative analysis of building and civil engineering structures. Structural reliability has been widely used for structural analysis and optimization design, while structural robustness is still in rapid development. Several dimensionless evaluation indexes have been defined for structural robustness so far, such as the structural reliability-based redundancy index. However, these different evaluation indexes are usually based on subjective definitions, and they are also difficult to put into engineering practice. The mathematical relational model between structural reliability and structural robustness has not been established yet. This paper is a quantitative study, focusing on the mathematical relation between structural reliability and structural robustness so as to further develop the theory of structural robustness. A strain energy evaluation index for structural robustness is introduced firstly by considering the energy principle. The mathematical relation model of structural reliability and structural robustness is then derived followed by a further comparative study on sensitivity, structural damage, and random variation factor. A cantilever beam and a truss beam are also presented as two case studies. In this study, a parabolic curve mathematical model between structural reliability and structural robustness is established. A significant variation trend for their sensitivities is also observed. The complex interaction mechanism of the joint effect of structural damage and random variation factor is also reflected. With consideration of the variation trend of the structural reliability index that is affected by different degrees of structural damage (mild impairment, moderate impairment, and severe impairment), a three-stage framework for structural life-cycle maintenance management is also proposed. This study can help us gain a better understanding of structural robustness and structural reliability. Some practical references are also provided for the better decision-making of maintenance and management departments.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jun Wu ◽  
Suo-Yi Tan ◽  
Zhong Liu ◽  
Yue-Jin Tan ◽  
Xin Lu

2004 ◽  
Vol 1 (1) ◽  
pp. 114-120 ◽  
Author(s):  
T. Wilhelm ◽  
J. Behre ◽  
S. Schuster

Sign in / Sign up

Export Citation Format

Share Document