Forest Cover Change in the Ohangwena Region, Northern Namibia: a Case Study Based on Multitemporal Landsat Images and Aerial Photography

1999 ◽  
Vol 184 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Antti Erkkilä ◽  
Satu Löfman
2019 ◽  
Vol 19 (7) ◽  
pp. 1963-1971
Author(s):  
Karen Lebek ◽  
Cornelius Senf ◽  
David Frantz ◽  
José A. F. Monteiro ◽  
Tobias Krueger

2014 ◽  
Vol 123 (6) ◽  
pp. 1349-1360 ◽  
Author(s):  
Anirban Mukhopadhyay ◽  
Arun Mondal ◽  
Sandip Mukherjee ◽  
Dipam Khatua ◽  
Subhajit Ghosh ◽  
...  

2022 ◽  
Vol 302 ◽  
pp. 114067
Author(s):  
Manoranjan Mishra ◽  
Celso Augusto Guimarães Santos ◽  
Thiago Victor Medeiros do Nascimento ◽  
Manoj Kumar Dash ◽  
Richarde Marques da Silva ◽  
...  

Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 25
Author(s):  
Emmanuel Da Da Ponte ◽  
Monserrat García-Calabrese ◽  
Jennifer Kriese ◽  
Nestor Cabral ◽  
Lidia Perez de Perez de Molas ◽  
...  

Over the past 40 years, Paraguay has lost the majority of its natural forest cover, thus becoming one of the countries with the highest deforestation rates in the world. The rapid expansion of the agricultural frontier, cattle ranching, and illegal logging between 1987 and 2012 resulted in the loss of 27% of original forest cover, equivalent to almost 44,000 km2. Within this context, the present research provides the first yearly analysis of forest cover change in the Paraguayan Chaco between the years 1987 and 2020. Remote sensing data obtained from Landsat images were applied to derive annual forest cover masks and deforestation rates over 34 years. Part of this study is a comprehensive assessment of the effectiveness of protected areas, as well as an analysis of the degree of fragmentation of the forest. All classification results obtained accuracies above 80% and revealed a total forest cover loss of approximately 64,700 km2. Forest clearing within protected areas was not frequent; however, some natural reserves presented losses of up to 25% of their forest cover. Through the consideration of several landscape metrics, this study reveals an onward fragmentation of forest cover, which endangers the natural habitat of numerous species.


2020 ◽  
Author(s):  
Andrey N. Shikhov ◽  
Alexander V. Chernokulsky ◽  
Igor O. Azhigov ◽  
Anastasia V. Semakina

Abstract. Severe winds are among the main causes of natural disturbances in boreal and temperate forests. Here, we present a new GIS database of stand-replacing windthrows in the forest zone of the European Russia (ER) for the 1986–2017 period. Delineation of windthrows was based on the full archive of Landsat images and two Landsat-derived products on forest cover change, namely the Global Forest Change and the Eastern’ Europe Forest Cover Change datasets. Subsequent verification and analysis of each windthrow was carried out to determine a type of related storm event, its date or date range, and geometrical characteristics. The database contains 102 747 elementary areas of damaged forest that were combined into 700 windthrows caused by 486 convective or non-convective storm events. The database includes stand-replacing windthrows only, which an area > 5 ha and > 25 ha for events caused by tornadoes and other storms, respectively. Additional information contained weather station reports and event description from media sources is also provided. The total area of windthrows amounts to 2966 km2, that is 0.19 % of the forested area of the study region. Convective windstorms contribute 82.5 % to total wind-damaged area, while tornadoes and non-convective windstorms are responsible for 12.9 % and 4.6 % of this area, respectively. Most of windthrows in the ER happen in to summer that is in contrast to Western and Central Europe, where windthrows mainly occur in autumn and winter. The compiled database provides a valuable source of spatial and temporal information on windthrows in the ER and can be successfully used both in forest science and severe storm studies. The database is available at https://doi.org/10.6084/m9.figshare.12073278.v3 (Shikhov et al., 2020).


2020 ◽  
Vol 12 (17) ◽  
pp. 2705
Author(s):  
Abner Jiménez ◽  
Alexander J. Hernández ◽  
Víctor M Rodríguez-Espinosa

Satellite monitoring of forests plays a relevant role in the agendas of tropical countries, mainly in the framework of international negotiations to implement a mechanism that ensures a reduction in global CO2 emissions from deforestation. An efficient way to approach this monitoring is to avoid duplication of efforts, generating products in a regional context that are subsequently adopted at the national level. In this effort, you should take advantage of the different data sources available by integrating geospatial tools and satellite image classification algorithms. In this research, a methodological framework was developed to generate cost-efficient national maps of forest cover and its dynamics for the countries of Central America, and its scalability and replicability was explored in the Democratic Republic of the Congo (DRC) and the State of Pará in Brazil. The maps were generated from Landsat images from the years 2000, 2012, and 2017. New geoprocessing elements have been incorporated into the digital classification procedures for satellite images, such as the automated extraction of training samples from secondary sources, the use of official national reference maps that respond to nationally adopted forest definitions, and automation of post-classification adjustments incorporating expert criteria. The applied regional approach offers advantages in terms of reducing costs and time, as well as improving the consistency and coherence of reports at different territorial levels (regional and national), reducing duplication of efforts and optimizing technical and financial resources. In Central America, the percentage of forest area decreased from 44% in 2000 to 38% in 2017. Average deforestation in the 2000–2012 period was 197,443 ha/year and that of 2012–2017 was 332,243 ha/year. Average deforestation for the complete period 2000–2017 was 264,843 ha/year. The tropical forests in both the State of Pará, Brazil, and the DRC have decreased over time.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 191
Author(s):  
Mohamed Ali Mohamed

In Syria, 76% of the forests are located in the Syrian coast region. This region is witnessing a rapid depletion of forest cover during the conflict that broke out in mid-2011. To date, there have been no studies providing accurate, reliable, and comprehensive data on the qualitative and quantitative aspects of forest change dynamics and the underlying drivers behind this change. In this study, changes in the dynamics of forest cover and its density between 2010 and 2020 were detected and analyzed using multi-temporal Landsat images. This study also analyzed the relationship between changes in forest cover and selected physical and socio-demographic variables associated with the drivers of change. The results revealed that the study area witnessed a significant decrease in the total forest area (31,116.0 ha, 24.3%) accompanied by a considerable decrease in density, as the area of dense forests decreased by 11,778.0 ha (9.2%) between 2010 and 2020. The change in forest cover was driven by a variety of different factors related to the conflict. The main drivers were changes in economic and social activities, extensive exploitation of forest resources, frequent forest fires, and weakness of state institutions in managing natural resources and environmental development. Forest loss was also linked to the expansion of cultivated area, increase in population and urban area. Fluctuating climatic conditions are not a major driver of forest cover dynamics in the study area. This decrease in forest area and density reflects sharp shifts in the natural environment during the study period. In the foreseeable future, it is not possible to determine whether the changes in forest cover and its density will be permanent or temporary. Monitoring changes in forest cover and understanding the driving forces behind this change provides quantitative and qualitative information to improve planning and decision-making. The results of this study may draw the attention of decision-makers to take immediate actions and identify areas of initial intervention to protect current the forests of the Syrian coast region from loss and degradation, as well as develop policies for the sustainable management of forest resources in the long term.


Sign in / Sign up

Export Citation Format

Share Document