scholarly journals An Assessment of Forest Cover Change and Its Driving Forces in the Syrian Coastal Region during a Period of Conflict, 2010 to 2020

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 191
Author(s):  
Mohamed Ali Mohamed

In Syria, 76% of the forests are located in the Syrian coast region. This region is witnessing a rapid depletion of forest cover during the conflict that broke out in mid-2011. To date, there have been no studies providing accurate, reliable, and comprehensive data on the qualitative and quantitative aspects of forest change dynamics and the underlying drivers behind this change. In this study, changes in the dynamics of forest cover and its density between 2010 and 2020 were detected and analyzed using multi-temporal Landsat images. This study also analyzed the relationship between changes in forest cover and selected physical and socio-demographic variables associated with the drivers of change. The results revealed that the study area witnessed a significant decrease in the total forest area (31,116.0 ha, 24.3%) accompanied by a considerable decrease in density, as the area of dense forests decreased by 11,778.0 ha (9.2%) between 2010 and 2020. The change in forest cover was driven by a variety of different factors related to the conflict. The main drivers were changes in economic and social activities, extensive exploitation of forest resources, frequent forest fires, and weakness of state institutions in managing natural resources and environmental development. Forest loss was also linked to the expansion of cultivated area, increase in population and urban area. Fluctuating climatic conditions are not a major driver of forest cover dynamics in the study area. This decrease in forest area and density reflects sharp shifts in the natural environment during the study period. In the foreseeable future, it is not possible to determine whether the changes in forest cover and its density will be permanent or temporary. Monitoring changes in forest cover and understanding the driving forces behind this change provides quantitative and qualitative information to improve planning and decision-making. The results of this study may draw the attention of decision-makers to take immediate actions and identify areas of initial intervention to protect current the forests of the Syrian coast region from loss and degradation, as well as develop policies for the sustainable management of forest resources in the long term.

2018 ◽  
Vol 10 (2) ◽  
pp. 73-78
Author(s):  
MA Salam ◽  
MAT Pramanik

Deforestation, degradation, damages, transformation and over exploitation of forests are the common problem in different parts of the world. Timely monitoring and assessment of forest resources may help to address and identify the above mentioned problems and thus proper guidance may be given the forest resources manager for rational planning and management of forests. Apart from the conventional methods of forest monitoring, remote sensing with its unique capability of synoptic viewing, real time and repetitive nature offers a potential tool for monitoring and evaluation of forest resources and hence remote sensing technology has been successfully used in various studies like forest inventory, monitoring of forest cover changes and forest damage assessment. In the present research forest cover change analysis in ‘Madhupur Sal Forest’ located in central part of Bangladesh has been investigated using satellite remote sensing data and spatial analysis. Transformation of ‘Sal forest’ to other landuse has been studied using the Landsat MSS (Multi Spectral Scanner) data of 1973 and Landsat 8 OLI (Operational Land Imager) data of 2015. Driving forces behind the transformation of ‘Sal forest’ has also been investigated through GPS (Global Positioning System) based ground verification and interview with the people living in the locality.J. Environ. Sci. & Natural Resources, 10(2): 73-78 2017


1970 ◽  
Vol 20 (1) ◽  
pp. 30-36
Author(s):  
CM Kandel ◽  
M Caetano ◽  
P Cabral

This study uses Landsat TM of 1989 and ETM+ of 1999 and 2005 imagery to evaluateforest cover dynamics during 1989-2005 in the Bara district of Nepal. The aim of thestudy was to analyse the extent and trend of forest cover dynamics, spatial pattern offorest and their driving forces. Forest cover change analysis was performed using objectorientedclassification approach applying a standard nearest neighbour algorithm to classifythe image in recognition. The overall classification accuracies were 85.71% and 88.23%for the year 1999 and 2005, respectively. Land cover maps were produced with sevenland cover categories and were further reclassified as forest and non-forest areas toanalyse the forest cover dynamics. Post-classification and time series analysis were carriedout to detect the changes. Spatial metrics were computed for detecting the spatial patternof forest. The classifications suggested that the amount of forest land had decreased by11.56% during 1989-2005. Spatial metrics revealed that forest area has been fragmentedand deforested with an annual rate of 0.72%. The overall result demonstrates that forestarea has experienced a significant shrinkage and mostly transferred into agricultural andbare land. Expected change for the year 2021 was projected using Markov Chain Analysis(MCA). The MCA result showed that forest area would decrease by 8.5% in the period of2005-2021.Key words: Forest cover dynamics; geographical information systems; landsat; remotesensing; spatial metricsDOI: 10.3126/banko.v20i1.3506Banko Janakari, Vol. 20, No. 1 pp.30-36


2021 ◽  
Vol 13 (20) ◽  
pp. 4093
Author(s):  
Bhagawat Rimal ◽  
Hamidreza Keshtkar ◽  
Nigel Stork ◽  
Sushila Rijal

The analysis of forest cover change at different scales is an increasingly important research topic in environmental studies. Forest Landscape Restoration (FLR) is an integrated approach to manage and restore forests across various landscapes and environments. Such restoration helps to meet the targets of Sustainable Development Goal (SDG)–15, as outlined in the UN Environment’s sixth Global Outlook, which includes the sustainable management of forests, the control of desertification, reducing degradation, biodiversity loss, and the conservation of mountain ecosystems. Here, we have used time series Landsat images from 1996 to 2016 to see how land use, and in particular forest cover, have changed between 1996 and 2016 in the Lumbini Province of Nepal. In addition, we simulated projections of land cover (LC) and forest cover change for the years 2026 and 2036 using a hybrid cellular automata Markov chain (CA–Markov) model. We found that the overall forest area increased by 199 km2 (2.1%), from a 9491 km2 (49.3%) area in 1996 to 9691 km2 (50.3%) area in 2016. Our modeling suggests that forest area will increase by 81 km2 (9691 to 9772 km2) in 2026 and by 195 km2 (9772 km2 to 9966 km2) in 2036. They are policy, planning, management factors and further strategies to aid forest regeneration. Clear legal frameworks and coherent policies are required to support sustainable forest management programs. This research may support the targets of the Sustainable Development Goals (SDG), the land degradation neutral world (LDN), and the UN decade 2021–2031 for ecosystem restoration.


2020 ◽  
Author(s):  
Polash Banerjee

Abstract The recent episodes of forest fire in Brazil and Australia of 2019 are tragic reminders of the hazards of the forest fire. Globally incidents of forest fire events are in the rise due to human encroachment into wilderness and climate change. Sikkim with a forest cover of more than 47%, suffers seasonal instances of frequent forest fire during the dry winter months. To address this issue, a GIS-aided and MaxEnt machine learning-based forest fire prediction map has been prepared using forest fire inventory database and maps of environmental features. The study indicates that amongst the environmental features, climatic conditions and proximity to roads are the major determinants of the forest fire. Model validation criteria like ROC curve, correlation coefficient and Cohen’s Kappa show a good predictive capability (AUC = 0.95, COR = 0.78, κ = 0.78). The outcomes of this study in the form of a forest fire prediction map can aid the stakeholders of the forest in taking informed mitigation measures.


Author(s):  
Anna TURCZAK

The contributions of forests to the well-being of humankind are extraordinarily vast and far-reaching. They are an important element in mitigating climate change. The aim of the paper is to determine the influence of particular factors on the diversity of the European Union countries in terms of the amount of wood forest resources compared with the country size. Two factors affecting the variable have been analysed in the paper: 1) the growing stock per 1 hectare of forest area and 2) the quotient of the forest area and the land area without inland water. Those two independent variables are directly proportional to the dependent variable, thus the higher the growing stock density and the higher the forest cover, the bigger the amount of wood forest resources of the analysed country. The causal analysis allowed to answer the question how the two factors affect the variable considered in the twenty eight countries, namely, what the direction and the strength of their influence are. The logarithmic method was used to carry out the causal analysis. The average results obtained for the entire European Union were compared with those received for each country separately and, on this basis, final conclusions were drawn. Data for 2005, 2010 and 2015 have been used for all needed calculations.


2019 ◽  
Vol 34 (10) ◽  
pp. 2401-2419
Author(s):  
Alison B. Adams ◽  
Jennifer Pontius ◽  
Gillian Galford ◽  
David Gudex-Cross

2013 ◽  
Vol 368 (1625) ◽  
pp. 20120405 ◽  
Author(s):  
Thomas K. Rudel

For decades, the dynamics of tropical deforestation in sub-Saharan Africa (SSA) have defied easy explanation. The rates of deforestation have been lower than elsewhere in the tropics, and the driving forces evident in other places, government new land settlement schemes and industrialized agriculture, have largely been absent in SSA. The context and causes for African deforestation become clearer through an analysis of new, national-level data on forest cover change for SSA countries for the 2000–2005 period. The recent dynamic in SSA varies from dry to wet biomes. Deforestation occurred at faster rates in nations with predominantly dry forests. The wetter Congo basin countries had lower rates of deforestation, in part because tax receipts from oil and mineral industries in this region spurred rural to urban migration, declines in agriculture and increased imports of cereals from abroad. In this respect, the Congo basin countries may be experiencing an oil and mineral fuelled forest transition. Small farmers play a more important role in African deforestation than they do in southeast Asia and Latin America, in part because small-scale agriculture remains one of the few livelihoods open to rural peoples.


Land ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 524
Author(s):  
Barima Yao Sadaiou Sabas ◽  
Konan Gislain Danmo ◽  
Kouakou Akoua Tamia Madeleine ◽  
Bogaert Jan

The cocoa economy of Ivory Coast started in the eastern part of the country in the 1970s and spread to the central-western and then south-western regions. For nearly a decade, it has been in the West of Ivory Coast with a population increase caused by large waves of migration. This study aims to determine different factors explaining dynamics of the cocoa economy from the East to West of Ivory Coast. The method adopted consisted of processing Landsat images from 1985–2018 and an individual survey of 278 heads of households. The results obtained showed that the development of the cocoa economy led forest cover degradation with a total loss estimated at 60.80%, 46.39%, 20.76% and 51.18% of forest area in the East, Centre-West, South-West and West, respectively. The creation of new cocoa farms in the West of Ivory Coast is governed by non-native people (51.13%) settled between 2010 and 2018. About 41% of these producers come mainly from the Centre-West (25%) and the South-West (16%). In addition, 29% of producers come from the West of Ivory Coast. Despite the abiotic characteristics being considered unfavourable, the west of Ivory Coast is in the process of becoming the country’s new zone of high cocoa production.


2020 ◽  
Vol 62 (1) ◽  
pp. 31-38
Author(s):  
Hubert Szramka ◽  
Krzysztof Adamowicz

AbstractWhilst, in many countries, the scale of forest loss from business-as-usual development is immense, in Poland, this problem does not exist. However, obtaining additional land areas for afforestation is a main issue in Poland. In Poland, after the World War II, the forest area has been systematically growing. In 1945, the forest area was about 6.5 million ha, and the forest cover was 21%. In 2016, the forest area reached 9.2 million ha, and forest cover amounted to 29.5%. Today, there are 0.24 ha of forests per one inhabitant of Poland. The size of wood resources in stands is also changing. In 1945, forest resources on the trunk amounted to approximately 906 million m3, and in 2016, it reached 2.4 million m3. The problem, however, is the uneven distribution of forests in Poland. Forests in Poland are very strictly protected by law. There are two most important acts, Forest Act of 2001 and Nature Conservation Act of 2004, that regulate principles for the retention, protection and augmentation of forest resources. Over the past decades in Poland, the social demands regarding non-economical functions of forest such as recreational activities, soil and water protection and mitigation of global warming became an important and constantly growing challenge for forest managers. Thus we suggest that, first of all, it is very important to extract the leading function for a given forest area. Interactions between development and conservations policies are very tied and may suggest the need of their integration. In this article, we present the concept of development policy for forest management and forest protection in Poland.


Sign in / Sign up

Export Citation Format

Share Document