The Parameters Influencing High-Pressure Mechanical Gas Face Seal Behavior in Static Operation

2009 ◽  
Vol 52 (5) ◽  
pp. 643-654 ◽  
Author(s):  
NOËL BRUNETIERE ◽  
SEBASTIEN THOMAS ◽  
BERNARD TOURNERIE
Author(s):  
Se´bastien Thomas ◽  
Noe¨l Brunetie`re ◽  
Bernard Tournerie

A numerical model of face seals operating with compressible fluids at high pressure is presented. Inertia terms are included using an averaged method and thermal effects are considered. The real behaviour of gases at high pressure is taken into account. An original exit boundary condition is used to deal with choked flow. The model is validated by comparison with experimental data and analytical solutions. Finally, the influence of the operating conditions on the performance of a high-pressure gas face seal is analysed.


2005 ◽  
Vol 128 (2) ◽  
pp. 396-405 ◽  
Author(s):  
Sébastien Thomas ◽  
Noël Brunetière ◽  
Bernard Tournerie

An axisymetric numerical model of face seals operating with compressible fluids at high pressure is presented. Inertia terms are included using an averaged method and thermal effects are considered. The real behavior of gases at high pressure is taken into account. An original exit boundary condition is used to deal with choked flow. The model is validated by comparison with experimental data and analytical solutions. Finally, the influence of the operating conditions on the performance of a high-pressure gas face seal is analyzed. It is shown that when the flow is choked, the mass flow rate is reduced and the behavior of the seal becomes unstable.


Author(s):  
Xu-Dong Peng ◽  
Li-Li Tan ◽  
Ji-Yun Li ◽  
Song-En Sheng ◽  
Shao-Xian Bai

A two-dimensional Reynolds equation was established for isothermal compressible gas between the two faces of a dry gas face seal with both spiral grooves and an inner annular groove onto the hard face. The opening force, the leakage rate, the axial film stiffness and the film stiffness to leakage ratio were calculated by finite element method. The comparisons with the sealing performances of a typical gas face seal only with spiral grooves onto its hard face were made. The effects of the face geometric parameters on the static behavior of such a seal were analyzed. The optimization principle for geometric parameters of a dry gas face seals with spiral grooves and an inner annular groove was presented. The recommended geometric parameters of spiral grooves and circular groove presented by optimization can ensure larger axial stiffness while lower leakage rates.


2007 ◽  
Vol 129 (4) ◽  
pp. 841-850 ◽  
Author(s):  
Sébastien Thomas ◽  
Noël Brunetière ◽  
Bernard Tournerie

A numerical modeling of thermoelastohydrodynamic mechanical face seal behavior is presented. The model is an axisymmetric one and it is confined to high pressure compressible flow. It takes into account the behavior of a real gas and includes thermal and inertia effects, as well as a choked flow condition. In addition, heat transfer between the fluid film and the seal faces is computed, as are the elastic and thermal distortions of the rings. In the first part of this paper, the influence of the coning angle on mechanical face seal characteristics is studied. In the second part, the influence of the solid distortions is analyzed. It is shown that face distortions strongly modify both the gap geometry and the mechanical face seal’s performance. The mechanical distortions lead to a converging gap, while the gas expansion, by cooling the fluid, creates a diverging gap.


Author(s):  
Haojiong Zhang ◽  
Brad A. Miller ◽  
Robert G. Landers

A nonlinear reduced-order modeling approach based on Proper Orthogonal Decomposition (POD) is utilized to develop an efficient low order model, based on ordinary differential equations, for mechanical gas face seal systems. An example of a coned mechanical gas face seal in a flexibly mounted stator configuration is presented. The axial mode is modeled, and simulation studies are conducted using different initial conditions and forcing inputs. The results agree well with a fully meshed finite difference model, while the resulting model order is significantly decreased.


1992 ◽  
Vol 35 (1) ◽  
pp. 53-58 ◽  
Author(s):  
R. A. Shellef ◽  
R. P. Johnson
Keyword(s):  

2018 ◽  
Vol 66 (3) ◽  
Author(s):  
Yuan Yin ◽  
Weifeng Huang ◽  
Xiangfeng Liu ◽  
Ying Liu ◽  
Zixi Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document