Adaptive Analysis for Acoustic Emissions Generated from a Gas Face Seal

Author(s):  
Yuan Yin ◽  
Weifeng Huang ◽  
Xiangfeng Liu ◽  
Ying Liu ◽  
Songtao Hu ◽  
...  
2018 ◽  
Vol 66 (3) ◽  
Author(s):  
Yuan Yin ◽  
Weifeng Huang ◽  
Xiangfeng Liu ◽  
Ying Liu ◽  
Zixi Wang ◽  
...  

Author(s):  
Xu-Dong Peng ◽  
Li-Li Tan ◽  
Ji-Yun Li ◽  
Song-En Sheng ◽  
Shao-Xian Bai

A two-dimensional Reynolds equation was established for isothermal compressible gas between the two faces of a dry gas face seal with both spiral grooves and an inner annular groove onto the hard face. The opening force, the leakage rate, the axial film stiffness and the film stiffness to leakage ratio were calculated by finite element method. The comparisons with the sealing performances of a typical gas face seal only with spiral grooves onto its hard face were made. The effects of the face geometric parameters on the static behavior of such a seal were analyzed. The optimization principle for geometric parameters of a dry gas face seals with spiral grooves and an inner annular groove was presented. The recommended geometric parameters of spiral grooves and circular groove presented by optimization can ensure larger axial stiffness while lower leakage rates.


Author(s):  
Haojiong Zhang ◽  
Brad A. Miller ◽  
Robert G. Landers

A nonlinear reduced-order modeling approach based on Proper Orthogonal Decomposition (POD) is utilized to develop an efficient low order model, based on ordinary differential equations, for mechanical gas face seal systems. An example of a coned mechanical gas face seal in a flexibly mounted stator configuration is presented. The axial mode is modeled, and simulation studies are conducted using different initial conditions and forcing inputs. The results agree well with a fully meshed finite difference model, while the resulting model order is significantly decreased.


1992 ◽  
Vol 35 (1) ◽  
pp. 53-58 ◽  
Author(s):  
R. A. Shellef ◽  
R. P. Johnson
Keyword(s):  

2009 ◽  
Vol 52 (5) ◽  
pp. 643-654 ◽  
Author(s):  
NOËL BRUNETIERE ◽  
SEBASTIEN THOMAS ◽  
BERNARD TOURNERIE

Author(s):  
Se´bastien Thomas ◽  
Noe¨l Brunetie`re ◽  
Bernard Tournerie

A numerical model of face seals operating with compressible fluids at high pressure is presented. Inertia terms are included using an averaged method and thermal effects are considered. The real behaviour of gases at high pressure is taken into account. An original exit boundary condition is used to deal with choked flow. The model is validated by comparison with experimental data and analytical solutions. Finally, the influence of the operating conditions on the performance of a high-pressure gas face seal is analysed.


2012 ◽  
Vol 184-185 ◽  
pp. 180-183 ◽  
Author(s):  
Gang Ma ◽  
Wei Zhao ◽  
Xin Min Shen

The three dimensional model was established for studying performance of spiral groove gas face seal. According to machining features of different surface area, the seal face can be divided into three parts, rotor ring grooved area, rotor ring non-grooved area and static ring area. The effect of roughness on seal performance was analyzed based on calculation of three dimensional flow field. The analysis results show that the surface roughness of rotor ring grooved area has great influence on the seal performance, but the influence is little when roughness on non-grooved rotor ring surface and static ring surface. The influence must be considered when surface roughness of rotor ring grooved area bigger than 0.2μm. Roughness of rotor ring surface can increase the loading force while it also can cause the increase of leakage. It is important to select rational roughness when designing gas face seal.


2018 ◽  
Vol 120 ◽  
pp. 317-329 ◽  
Author(s):  
Songtao Hu ◽  
Weifeng Huang ◽  
Xi Shi ◽  
Zhike Peng ◽  
Xiangfeng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document