Influence of Viscosity and Magnetoviscous Effect on the Performance of a Magnetic Fluid Seal in a Water Environment

2017 ◽  
Vol 61 (2) ◽  
pp. 367-375 ◽  
Author(s):  
Zhenkun Li ◽  
Decai Li ◽  
Yibiao Chen ◽  
Yilong Yang ◽  
Jie Yao
2016 ◽  
Author(s):  
Noor Rasyada Ahmad Latiff ◽  
Hassan Soleimani ◽  
Hasnah Mohd Zaid ◽  
Muhammad Adil

2008 ◽  
Vol 15 (3) ◽  
pp. 49-58 ◽  
Author(s):  
Leszek Matuszewski ◽  
Zbigniew Szydło

The application of magnetic fluids in sealing nodes designed for operation in difficult conditions and in machines used in sea environment Presented in article MF seals are being researched for sea technology purposes due to their excellent tightness and low resistance of motion. These features are most valuable for ring propellers and ship's main propeller shaft. There are more reasons why technologists payf significant attention for various MF seals applications in their difficult operating conditions. For instance, an advanced pumping systems are designed with contactless (screw or centrifugal) fluid seal used as the first stage seal and then the MF seal as the main seal. Further parts of the article contain discuss of the properties of magnetic fluids in the construction of MF seals. Sample of the few systems of magnetic fluid seals are presented, which have been researched lately in our laboratory including sea conditions. The magnetic fluids used in our seals are colloidal suspensions of magnetic nanoparticles. Undertaken earlier various systems selection for sea-water purposes forced us to focus on double sealing systems, in which the MF seal is used as the second seal following a conventional system especially adapted to co-operation with MF systems. This solution successfully limits direct contact of the sealed liquid with the magnetic fluid, and the entire sealing construction secures absolute tightness of the system. Using this solution we also can reduce costs by elements high accuracy avoidance. Research and design activities are carried out in the AGH Laboratory of Seals and Magnetic Fluid Applications together with Deep Water Department of Technical University of Gdansk over the use of magnetic fluid seals in sea water environment. These activities are oriented on working out MF seals able to work effectively in machines in which low-pressure water flow takes place. The objects of experimental investigations are seals having two different nominal diameters: 50 mm and 220 mm and two research rigs of different construction had to be built up. Works are scheduled to be continued.


2017 ◽  
Vol 24 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Leszek Matuszewski

AbstractThe article analyses properties of magnetic fluid seals installed in rotary sealing nodes which operate in the utility water environment. Seals of this type have been examined as a possible solution to the problem with ship manoeuvring propulsion sealing. The present analysis bases on laboratory durability tests of magnetic fluid seals exposed to longterm utility water loads, at different water pressures and shaft revolutions. The basic seal durability criterion was the number of revolutions made by the sealing node shaft until the appearance of water tightness loss (leakage). It was found that the main factor leading to the wear of the seal is the relative speed of the magnetic fluid with respect to that of the utility water, and this process is heavily affected by the pressure acting on the seal. The reported test results are presented in the form of diagrams showing the seal durability (time until water tightness loss) as a function of rotational speed. The curves shown in the diagrams are regular, with two different rotational speed ranges: the highspeed range, when the tightness loss is relatively fast, and the low-speed range, with a clear tendency to prolong the seal lifetime. These diagrams were given the name of durability curves of the MF seal operating in water. The results of the performed tests suggest formal similarity between the experimental data distribution concerning tightness loss processes occurring in magnetic fluid seals operating in water environment and metal fatigue processes. The article proposes a preliminary simplified durability model to describe the examined phenomenon.


2015 ◽  
Vol 67 (5) ◽  
pp. 455-459 ◽  
Author(s):  
Marcin Szczech ◽  
Wojciech Horak

Purpose – The purpose of this publication is to determine the influence of selected factors on the durability and the tightness of ferrofluid seals working in water environments. Ferromagnetic fluid (FF) seals are one of the most common applications of magnetic fluid. New applications can be developed by extending the capabilities of these seals in fluid environments, especially in water. Design/methodology/approach – Tests were performed using ferrofluids with differing physical properties like density, dynamic viscosity and saturation magnetization. Working conditions, such as water pressure and peripheral speed, were taken into account. Findings – A mathematical description which allows the selection of an appropriate ferrofluid and the determination of the operating parameters of an FF seal was developed. Originality/value – This study concerns the influence of peripheral speed, water pressure and magnetic fluid properties on seal tightness.


Author(s):  
M.D. Bentzon ◽  
J. v. Wonterghem ◽  
A. Thölén

We report on the oxidation of a magnetic fluid. The oxidation results in magnetic super lattice crystals. The “atoms” are hematite (α-Fe2O3) particles with a diameter ø = 6.9 nm and they are covered with a 1-2 nm thick layer of surfactant molecules.Magnetic fluids are homogeneous suspensions of small magnetic particles in a carrier liquid. To prevent agglomeration, the particles are coated with surfactant molecules. The magnetic fluid studied in this work was produced by thermal decomposition of Fe(CO)5 in Declin (carrier liquid) in the presence of oleic acid (surfactant). The magnetic particles consist of an amorphous iron-carbon alloy. For TEM investigation a droplet of the fluid was added to benzine and a carbon film on a copper net was immersed. When exposed to air the sample starts burning. The oxidation and electron irradiation transform the magnetic particles into hematite (α-Fe2O3) particles with a median diameter ø = 6.9 nm.


2013 ◽  
Vol 133 (6) ◽  
pp. 366-371 ◽  
Author(s):  
Hideo Nagae ◽  
Sotoshi Yamada ◽  
Yoshio Ikehata ◽  
Satoshi Yagitani ◽  
Isamu Nagano

2020 ◽  
Vol 20 (3) ◽  
pp. 325-332
Author(s):  
Le Nhu Da ◽  
Le Thi Phuong Quynh ◽  
Phung Thi Xuan Binh ◽  
Duong Thi Thuy ◽  
Trinh Hoai Thu ◽  
...  

Recently, the Asian rivers have faced the strong reduction of riverine total suspended solids (TSS) flux due to numerous dam/reservoir impoundment. The Red river system is a typical example of the Southeast Asian rivers that has been strongly impacted by reservoir impoundment in both China and Vietnam, especially in the recent period. It is known that the reduction in total suspended solids may lead to the decrease of some associated elements, including nutrients (N, P, Si) which may affect coastal ecosystems. In this paper, we establish the empirical relationship between total suspended solids and total phosphorus concentrations in water environment of the Red river in its downstream section from Hanoi city to the Ba Lat estuary based on the sampling campaigns conducted in the dry and wet seasons in 2017, 2018 and 2019. The results show a clear relationship with significant coefficient between total suspended solids and total phosphorus in the downstream Red river. It is expressed by a simple equation y = 0.0226x0.3867 where x and y stand for total suspended solids and total phosphorus concentrations (mg/l) respectively with the r2 value of 0.757. This equation enables a reasonable prediction of total phosphorus concentrations of the downstream Red river when the observed data of total suspended solids concentrations are available. Thus, this work opens up the way for further studies on the calculation of the total phosphorus over longer timescales using daily available total suspended solids values.


Sign in / Sign up

Export Citation Format

Share Document